RESUMEN
High resolution mass spectrometry images are of increasing importance in biological applications, such as the study of tissues and single cells. Two promising techniques for this are matrix-enhanced secondary ion mass spectrometry (ME-SIMS) and matrix-assisted laser desorption/ionization (MALDI). For both techniques, the sample of interest must be coated with a matrix prior to analysis, and analytes must migrate into the matrix. The mechanisms involved in this migration and the factors that influence the migration are poorly understood, which lead to difficulties with reproducibility. In this work, a sublimation matrix coater with an effusion cell and sample cooling was developed and built in-house for controlled physical vapor deposition. In this system, sample transfer between the coater and mass spectrometer is possible without breaking vacuum, which facilitates the study of environmental influences on analyte migration. The influence of exposure to ambient air on the migration of two analytes (a lipid and a peptide), which were coated with the matrix α-cyano-4-hydroxycinnamic acid (CHCA), was studied using 3D-SIMS imaging. Although the distribution of analyte in the matrix changed very little after 21 h of storage in vacuum, significant redistribution of the analyte was observed after exposure to ambient air. The magnitude of the effect was greater for the lipid than for the peptide. Further work is needed to determine the role of humidity in the redistribution process and the impact of analyte redistribution on MALDI measurements.
RESUMEN
Time-of-flight secondary ion mass spectrometry is one of the most promising techniques for label-free analysis of biomolecules with nanoscale spatial resolution. However, high-resolution imaging of larger biomolecules such as phospholipids and peptides is often hampered by low yields of molecular ions. Matrix-enhanced SIMS (ME-SIMS), in which an organic matrix is added to the sample, is one promising approach to enhancing the ion yield for biomolecules. Optimizing this approach has, however, been challenging because the processes involved in increasing the ion yield in ME-SIMS are not yet fully understood. In this work, the matrix α-cyano-4-hydroxycinnamic acid (HCCA) has been combined with cluster primary ion analysis to better understand the roles of proton donation and reduced fragmentation on lipid molecule ion yield. A model system consisting of 1:100 mol ratio dipalmitoylphosphatidylcholine (DPPC) in HCCA as well as an HCCA-coated mouse brain cryosection have been studied using a range of Bi and Ar cluster ions. Although the molecular ion yield increased with an increase in cluster ion size, the enhancement of the signals from intact lipid molecules decreased with an increase in cluster ion size for both the model system and the mouse brain. Additionally, in both systems, protonated molecular ions were significantly more enhanced than sodium and potassium cationized molecules for all of the primary ions utilized. For the model system, the DPPC molecular ion yield was increased by more than an order of magnitude for all of the primary ions studied, and fragmentation of DPPC was dramatically reduced. However, on the brain sample, even though the HCCA matrix reduced DPPC fragmentation for all of the primary ions studied, the matrix coating suppressed the ion yield for some lipids when the larger cluster primary ions were employed. This indicated insufficient migration of the lipids into the matrix coating, so that dilution by the matrix overpowered the enhancement effect. This study provides strong evidence that the HCCA matrix both enhances protonation and reduces fragmentation. For imaging applications, the ability of the analytes to migrate to the surface of the matrix coating is also a critical factor for useful signal enhancement. This work demonstrates that the HCCA matrix provides a softer desorption environment when using Bi cluster ions than that obtained using the large gas cluster ions studied alone, indicating the potential for improved high spatial resolution imaging with ME-SIMS.
RESUMEN
Surface modification of indium tin oxide (ITO) electrodes with organic molecules is known to tune their work function which results in higher charge carrier selectivity in corresponding organic electronic devices and hence influences the performance of organic solar cells. In recent years, N-heterocyclic carbenes (NHCs) have also been proven to be capable to modify the work function of metals and semimetals compared to the unfunctionalized surface via the formation of strong covalent bonds. In this report, we have designed and performed the modification of the ITO surface with NHC by using the zwitterionic bench stable IPr-CO2 as the NHC precursor, applied via spin coating. Upon modification, the work function of ITO electrodes was reduced significantly which resulted in electron selective contacts in corresponding organic photovoltaic devices. In addition, various characterization techniques and analytical methods are used to elucidate the nature of the bound species and the corresponding binding mechanism of the material to the ITO surface.
RESUMEN
N-Heterocyclic carbene (NHC)-modified planar gold surfaces (NHC@Au) were found to be more susceptible toward wet chemical etching than undecorated surface areas. Site-selective decoration of NHCs on Au was achieved by microcontact printing (µCP) of the NHC precursors 1,3-bis(diisopropylphenyl)imidazol-3-ium hydrogen carbonate (IPr(H)[HCO3]) or 1,3-dimethylbenzimidazol-3-ium hydrogen carbonate (BIMe(H)[HCO3]). Strikingly, BIMe@Au showed concentration-dependent etching behavior, tunable from a positive resist to a negative resist. Surface patterning was verified by time-of-flight secondary-ion mass spectrometry and Kelvin probe force microscopy. Moreover, orthogonal µCP enabled the patterned functionalization of planar Au with both IPr and 1-eicosanethiol and the subsequent formation of three-dimensional structures with a single etching step. The selective removal of Au by functionalization with a surface ligand is unprecedented and enables novel applications of NHCs in materials chemistry and nanofabrication.
RESUMEN
Photoswitches have long been employed in coatings for surfaces and substrates to harness light as a versatile stimulus to induce responsive behavior. We previously demonstrated the viability of arylazopyrazole (AAP) as a photoswitch in self-assembled monolayers (SAMs) on silicon and glass surfaces for photoresponsive wetting applications. We now aim to transfer the excellent photophysical properties of AAPs to polymer brush coatings. Compared to SAMs, polymer brushes offer enhanced stability and an increase of the thickness and density of the functional organic layer. In this work, we present thiolactone acrylate copolymer brushes which can be post-modified with AAP amines as well as hydrophobic acrylates, making use of the unique chemistry of the thiolactones. This strategy enables photoresponsive wetting with a tuneable range of contact angle change on glass substrates. We show the successful synthesis of thiolactone hydroxyethyl acrylate copolymer brushes by means of surface-initiated atom-transfer radical polymerization with the option to either prepare homogeneous brushes or to prepare micrometer-sized brush patterns by microcontact printing. The polymer brushes were analyzed by atomic force microscopy, time-of-flight secondary ion spectrometry, and X-ray photoelectron spectroscopy. Photoresponsive behavior imparted to the brushes by means of post-modification with AAP is monitored by UV/vis spectroscopy, and wetting behavior of homogeneous brushes is measured by static and dynamic contact angle measurements. The brushes show an average change in static contact angle of around 13° between E and Z isomer of the AAP photoswitch for at least five cycles, while the range of contact angle change can be fine-tuned between 53.5°/66.5° (E/Z) and 81.5°/94.8° (E/Z) by post-modification with hydrophobic acrylates.
RESUMEN
Nanoparticles offer unique physical and chemical properties. Dip pen nanolithography of nanoparticles enables versatile patterning and nanofabrication with potential application in electronics and sensing, but is not well studied yet. Herein, the patterned deposition of various nanoparticles onto unmodified silicon substrates is presented. It is shown that aqueous solutions of hydrophilic citrate and cyclodextrin functionalized gold nanoparticles as well as poly(acrylic) acid decorated magnetite nanoparticles are feasible for writing nanostructures. Both smaller and larger nanoparticles can be patterned. Hydrophobic oleylamine or n-dodecylamine capped gold nanoparticles and oleic acid decorated magnetite nanoparticles are deposited from toluene. Tip loading is carried out by dip-coating, and writing succeeds fast within 0.1 s. Also, coating with longer tip dwell times, at different relative humidity and varying frequency are studied for deposition of nanoparticle clusters. The resulting feature size is between 300 and 1780 nm as determined by scanning electron microscopy. Atomic force microscopy confirms that the heights of the deposited structures correspond to a single or double layer of nanoparticles. Higher writing speeds lead to smaller line thicknesses, offering possibilities to more complex structures. Dip pen nanolithography can hence be used to pattern nanoparticles on silicon substrates independent of the surface chemistry.
RESUMEN
High spatial resolution mass spectrometry imaging has been identified as a key technology needed to improve understanding of the chemical components that influence antibiotic resistance within biofilms, which are communities of micro-organisms that grow attached to a surface. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) offers the unique ability for label-free 3D imaging of organic molecules with sub-micrometer spatial resolution and high sensitivity. Several studies of biofilms have been done with the help of ToF-SIMS, but none of those studies have shown 3D imaging of antibiotics in native-state hydrated biofilms with cell-level resolution. Because ToF-SIMS measurements must be performed in a high-vacuum environment, cryogenic preparation and analysis are necessary to preserve the native biofilm structure and antibiotic spatial distribution during ToF-SIMS measurements. In this study, we have investigated the penetration of the antibiotic ciprofloxacin into Bacillus subtilis biofilms using sub-micrometer resolution 3D imaging cryo-ToF-SIMS. B. subtilis biofilms were exposed to physiologically relevant levels of ciprofloxacin. The treated biofilms were then plunge-frozen in liquid propane and analyzed with ToF-SIMS under cryogenic conditions. Multivariate analysis techniques, including multivariate curve resolution (MCR) and inverse maximum signal factor (iMSF) denoising, were used to aid analysis of the data and facilitate high spatial resolution 3D imaging of the biofilm, providing individually resolved cells and spatially resolved ciprofloxacin intensity at "real world" concentrations.
Asunto(s)
Imagenología Tridimensional , Espectrometría de Masa de Ion Secundario , Espectrometría de Masa de Ion Secundario/métodos , Ciprofloxacina , Biopelículas , AntibacterianosRESUMEN
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is one of the most important techniques for chemical imaging of nanomaterials and biological samples with high lateral resolution. However, low ionization efficiency limits the detection of many molecules at low concentrations or in very small volumes. One promising approach to increasing the sensitivity of the technique is by the addition of a matrix that promotes ionization and desorption of important analyte molecules. This approach is known as matrix-enhanced secondary-ion mass spectrometry (ME-SIMS). We have investigated the effect of matrix acidity on molecular ion formation in three different biomolecules. A series of cinnamic acid based matrixes that vary in acidity was employed to systematically investigate the influence of matrix acidity on analyte ion formation. The positive ion signal for all three biomolecules showed a strong increase for more acidic matrixes. The most acidic matrix was then vapor-deposited onto mouse brain sections. This led to significant enhancement of lipid signals from the brain. This work indicates that proton donation plays an important role in the formation of molecular ions in ME-SIMS.
RESUMEN
Surface patterning of functional materials is a key technology in various fields such as microelectronics, optics, and photonics. In micro- and nanofabrication, polymers are frequently employed either as photoreactive or thermoresponsive resists that enable further fabrication steps, or as functional adlayers in electronic and optical devices. In this article, a method is presented for imprint lithography using low molecular weight arylazoisoxazoles photoswitches instead of polymer resists. These photoswitches exhibit a rapid and reversible solid-to-liquid phase transition upon photo-isomerization at room temperature, making them highly suitable for reversible surface functionalization at ambient conditions. Beyond photo-induced imprint lithography with multiple write-and-erase cycles, prospective applications as patterned matrix for nanoparticles and etch resist on gold surfaces are demonstrated.
RESUMEN
Improving signal-to-noise and, thereby, image contrast is one of the key challenges needed to expand the useful applications of mass spectrometry imaging (MSI). Both instrumental and data analysis approaches are of importance. Univariate denoising techniques have been used to improve contrast in MSI images with varying levels of success. Additionally, various multivariate analysis (MVA) methods have proven to be effective for improving image contrast. However, the distribution of important but low intensity ions can be obscured in the MVA analysis, leading to a loss of chemically specific information. In this work we propose inverse maximum signal factors (MSF) denoising as an alternative approach to both denoising and multivariate analysis for MSI imaging. This approach differs from the standard MVA techniques in that the output is denoised images for each original mass peak rather than the frequently difficult to interpret scores and loadings. Five tests have been developed to optimize and validate the resulting denoised images. The algorithm has been tested on a range of simulated data with different levels of noise, correlated noise, varying numbers of underlying components, and nonlinear effects. In the simulations, an excellent correlation between the true images and the denoised images was observed for peaks with an original signal-to-noise ratio as low as 0.1, as long as there was sufficient intensity in the sum of the selected peaks. The power of the approach was then demonstrated on two time-of-flight secondary ion mass spectrometry (ToF-SIMS) images that contained largely uncorrelated noise and a laser post-ionization matrix-assisted laser desorption/ionization mass spectrometry (MALDI-2-MS) image that contained strongly correlated noise. The improvements in signal-to-noise increased with decreasing intensity of the original peaks. A signal-to-noise improvement of as much as two orders of magnitude was achieved for very low intensity peaks. MSF denoising is a powerful addition to the suite of image processing techniques available for studying mass spectrometry images.
Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Relación Señal-Ruido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masa de Ion Secundario/métodosRESUMEN
Surface coatings that respond to external influences and change their physical properties upon application of external stimuli are of great interest, with light being a particularly desirable choice. Photoswitches such as azobenzenes have been employed in a range of photoresponsive coatings. One striking change in physical property of many photoresponsive coatings is their responsive wettability upon illumination. In this work, we present photoswitchable self-assembled monolayers based on arylazopyrazoles (AAPs). In solution, AAPs offer significant improvements in terms of the photostationary state, thermal stability, and fatigue resistance. The AAP photoswitch is coupled to triethoxysilanes for an easy, one-step functionalization of glass and silicon oxide surfaces. We show the synthesis of AAP-based silanes and the successful surface functionalization, and we confirm the excellent photoswitchability of the AAPs in a self-assembled monolayer upon alternating irradiation with UV (365 nm) and green (520 nm) light. The self-assembled monolayers are investigated by UV/vis spectroscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and contact angle goniometry. We furthermore investigate the effect of substitution of the AAPs on the photoresponsive wetting behavior and compare this with density functional theory (DFT) calculations of the dipole moments of the AAPs.
RESUMEN
A novel photoresponsive and fully conjugated N-heterocyclic carbene (NHC) has been synthesized that combines the excellent photophysical properties of arylazopyrazoles (AAPs) with an NHC that acts as a robust surface anchor (AAP-BIMe). The formation of self-assembled monolayers (SAMs) on gold was proven by ToF-SIMS and XPS, and the organic film displayed a very high stability at elevated temperatures. This stability was also reflected in a high desorption energy, which was determined by temperature-programmed SIMS measurements. E-/Z-AAP-BIMe@Au photoisomerization resulted in reversible alterations of the surface energy (i.e. wettability), the surface potential (i.e. work function), and the conductance (i.e. resistance). The effects could be explained by the difference in the dipole moment of the isomers. Furthermore, sequential application of a dummy ligand by microcontact printing and subsequent backfilling with AAP-BIMe allowed its patterning on gold. To the best of our knowledge, this is the first example of a photoswitchable NHC on a gold surface. These properties of AAP-BIMe@Au illustrate its suitability as a molecular switch for electronic devices.
RESUMEN
Artificial lipid membranes play a growing role in technical applications such as biosensors in pharmacological research and as model systems in the investigation of biological lipid films. In the standard procedure for displaying the distribution of membrane components, fluorescence microscopy, the fluorophores used can influence the distribution of the components and usually not all substances can be displayed at the same time. The discriminant analysis-based algorithm used in combination with scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) enables marker-free, quantitative, simultaneous recording of all membrane components. These data are used for reconstruction of distribution patterns. In the model system used for this survey, a tear fluid lipid layer, the distribution patterns of all lipids correlate well in calculated ToF-SIMS images and epi-fluorescence microscopic images. All epi-fluorescence microscopically viewable structures are visible when using both positive and negative secondary ions and can be reproduced with high lateral resolution in the submicrometer range despite the very low signal intensity and a very low signal-to-noise ratio. In addition, three-dimensional images can be obtained with a subnanometer depth resolution. Furthermore, structures and the distribution of substances that cannot be made visible by epi-fluorescence microscopy can be displayed. This enables new insights that cannot be gained by epi-fluorescence microscopy alone.
Asunto(s)
Algoritmos , Análisis Discriminante , Imagenología Tridimensional/métodos , Membranas Artificiales , Imagen Molecular/métodos , Lípidos/química , Espectrometría de Masa de Ion SecundarioRESUMEN
Patterned monolayers of N-heterocyclic carbenes (NHCs) on gold surfaces were obtained by microcontact printing of NHC-CO2 adducts and NHC(H)[HCO3 ] salts. The NHC-modified areas showed an increased conductivity compared to unmodified gold surface areas. Furthermore, the remaining surface areas could be modified with a second, azide-functionalized carbene, facilitating further applications and post-printing modifications. Thorough elucidation by a variety of analytical methods offers comprehensive evidence for the viability of the methodology reported here. The protocol enables facile access to versatile, microstructured NHC-modified gold surfaces with highly stable patterns, enhanced conductivity, and the option for further modification.
RESUMEN
Cholesterol is an essential component of most biological membranes and serves important functions in controlling membrane integrity, organization, and signaling. However, probes to follow the dynamic distribution of cholesterol in live cells are scarce and so far show only limited applicability. Herein, we addressed this problem by synthesizing and characterizing a class of versatile and clickable cholesterol-based imidazolium salts. We show that these cholesterol analogs faithfully mimic the biophysical properties of natural cholesterol in phospholipid mono- and bilayers, and that they integrate into the plasma membrane of cultured and primary human cells. The membrane-incorporated cholesterol analogs can be specifically labeled by click chemistry and visualized in live-cell imaging experiments that show a distribution and behavior comparable with that of endogenous membrane cholesterol. These results indicate that the cholesterol analogs can be used to reveal the dynamic distribution of cholesterol in live cells.
Asunto(s)
Membrana Celular/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Imidazoles/metabolismo , Supervivencia Celular , Colesterol/análisis , Química Clic , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Imidazoles/análisis , Imidazoles/síntesis química , Líquidos Iónicos/análisis , Líquidos Iónicos/síntesis química , Líquidos Iónicos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Imagen Óptica , Espectrometría de Fluorescencia , Espectrometría de Masa de Ion SecundarioRESUMEN
Electrochemiluminescence (ECL) generated by a monolayer of a spirobifluorene derivative covalently bound onto an indium tin oxide (ITO) substrate is reported for the first time. Our approach allows the efficient preparation homogeneous and patterned substrates through micromolding in capillaries (MIMIC), and opens novel scenarios for multicolour ECL applications.
RESUMEN
In this study, the influence of two different cluster primary ions in laser secondary neutral mass spectrometry (Laser-SNMS) has been investigated. Despite the many advantages of Laser-SNMS, fragmentation of neutral organic molecules during both sputtering and photoionization has limited its efficiency for the study of large organic and biological molecules. Cluster ion sputtering, and in particular large argon gas cluster sputtering, has been proposed as a means of reducing this fragmentation. Molecules of 9-fluorenylmethoxycarbonyl-pentafluoro-l-phenylalanine were sputtered using Bi3+ and Ar2000+ cluster primary ions, and the desorbed neutral species ("secondary neutrals") were postionized using a 7.87 eV vacuum ultraviolet laser light fluorine excimer laser. By varying timing parameters and laser power density, time-of-flight and laser power density distributions were obtained to investigate the fragmentation and energy distributions of the sputtered neutral species. Changing from 30 keV Bi3+ sputtering to 10 keV Ar2000+ resulted in a significant reduction in fragmentation of the molecule as well as a suppression of the high background that results from metastable decay of highly excited ions, yielding significantly improved detection of the intact molecule and characteristic fragments. Analysis of the influence of laser power density and laser pulse delay time indicates a reduction of fragmentation in both the sputtering phase and the photoionization phase. This study demonstrates the importance of soft desorption for efficient laser postionization of large organic molecules and shows the potential for improving the efficiency of laser postionization by using large gas cluster ion sputtering.
Asunto(s)
Factores Biológicos/análisis , Espectrometría de Masas/métodos , Compuestos Orgánicos/análisisRESUMEN
The use of time-of-flight secondary ion mass spectrometry (SIMS) is of increasing interest for biological and medical applications due to its ability to provide chemical information on a submicrometer scale. However, the detection of larger biomolecules such as phospholipids and peptides is often inhibited by high fragmentation rates and low ionization efficiencies. One way to increase the secondary ion molecular yield is to chemically modify the surface using the matrix-enhanced SIMS approach, where an organic matrix is placed upon the surface. In this study, a Knudsen cell type matrix coater was developed in order to produce well-defined thicknesses of a matrix on a sample in order to study the effect of these matrix layers on the secondary ions. Using this technique, an order of magnitude enhancement of the useful ion yield for lipids was observed and clear enhancement of image contrast for lipids in brain tissue was demonstrated. The study shows that the layer thickness has a great influence on the emission of secondary ions, and therefore, its precise control is important for optimal yield enhancement.
Asunto(s)
Técnicas de Preparación Histocitológica/métodos , Lípidos/análisis , Espectrometría de Masa de Ion Secundario/métodos , Propiedades de Superficie , Animales , Química Encefálica , Femenino , Ratones Endogámicos C57BLRESUMEN
In this paper, we show that carboxylic acid-functionalized molecules can be patterned by photochemical microcontact printing on tetrazole-terminated self-assembled monolayers. Upon irradiation, tetrazoles eliminate nitrogen to form highly reactive nitrile imines, which can be ligated with several different nucleophiles, carboxylic acids being the most reactive. As a proof of concept, we immobilized trifluoroacetic acid to monitor the reaction with X-ray photoelectron spectroscopy. Moreover, we also immobilized peptides and fabricated carbohydrate-lectin as well as biotin-streptavidin microarrays using this method. Surface-patterning was demonstrated by fluorescence microscopy and time-of-flight secondary ion mass spectrometry.
RESUMEN
The generation of carbohydrate patterns on surfaces enables a wide range of analytical and diagnostic applications and efficient methods for carbohydrate immobilization are crucial for this purpose. We report on surface O-glycosylation by catalytic printing as a novel, effective method for the covalent immobilization of carbohydrates in micropatterns. Beside the verification of surface functionalization, the suitability of the generated surface for ligand protein interactions was demonstrated.