RESUMEN
Organic semiconductors are a family of pi-conjugated compounds used in many applications, such as displays, bioelectronics, and thermoelectrics. However, their susceptibility to processing-induced contamination is not well understood. Here, it is shown that many organic electronic devices reported so far may have been unintentionally contaminated, thus affecting their performance, water uptake, and thin film properties. Nuclear magnetic resonance spectroscopy is used to detect and quantify contaminants originating from the glovebox atmosphere and common laboratory consumables used during device fabrication. Importantly, this in-depth understanding of the sources of contamination allows the establishment of clean fabrication protocols, and the fabrication of organic field effect transistors (OFETs) with improved performance and stability. This study highlights the role of unintentional contaminants in organic electronic devices, and demonstrates that certain stringent processing conditions need to be met to avoid scientific misinterpretation, ensure device reproducibility, and facilitate performance stability. The experimental procedures and conditions used herein are typical of those used by many groups in the field of solution-processed organic semiconductors. Therefore, the insights gained into the effects of contamination are likely to be broadly applicable to studies, not just of OFETs, but also of other devices based on these materials.
RESUMEN
IMPORTANCE: Many therapies are used to treat COVID-19, the disease caused by the virus SARS-CoV-2, including convalescent plasma. The clinical utility of using 2 units of convalescent plasma for COVID-19 hospitalized patients is not fully understood. OBJECTIVE: Many therapies are used to treat COVID-19, the disease caused by the virus SARS-CoV-2, including convalescent plasma. The clinical utility of using 2 units of convalescent plasma for COVID-19 hospitalized patients is not fully understood. Our study aims to determine the safety and efficacy of treating hospitalized COVID-19 patients with 2 units of COVID-19 convalescent plasma (CCP). METHOD: This was a retrospective study of Arkansas patients treated with CCP using the (US) Food and Drug Administration (FDA) emergency Investigational New Drug (eIND) mechanism from April 9, 2020, through August 9, 2020. It was a multicenter, statewide study in a low-resource setting, which are areas that lack funding for health care cost coverage on various levels including individual, family, or social. Adult patients (n = 165, volunteer sample) in Arkansas who were hospitalized with severe or life-threatening acute COVID-19 disease as defined by the FDA criteria were transfused with 2 units of CCP (250 mL/unit) using the FDA eIND mechanism. The primary outcome was 7- and 30-day mortality after the second unit of CCP. RESULTS: Unadjusted mortality was 12.1% at 7 days and 23.0% at 30 days. The unadjusted mortality was reduced to 7.7% if the first CCP unit was transfused on the date of diagnosis, 8.7% if transfused within 3 days of diagnosis, and 32.0% if transfused at or after 4 or more days of diagnosis. The risk of death was higher in patients that received low, negative, or missing titer CCP units in comparison to those that received higher titer units. CONCLUSION: The provision of 2 units of CCP was associated with a reduction in mortality in patients treated with high titer units within 3 days of COVID-19 diagnosis. Given the results, CCP is a viable, low-cost therapy in resource-constrained states and countries.
Asunto(s)
COVID-19 , Adulto , Humanos , COVID-19/terapia , SARS-CoV-2 , Estudios Retrospectivos , Prueba de COVID-19 , Sueroterapia para COVID-19RESUMEN
Hybrid integration of n-type oxide with p-type polymer transistors is an attractive approach for realizing high performance complementary circuits on flexible substrates. However, the stability of solution-processed oxide transistors is limiting the lifetime and reliability of such circuits. Oxygen vacancies are the main defect degrading metal oxide transistor performance when ambient oxygen adsorbs onto metal oxide films. Here, an effective surface passivation treatment based on negative oxygen ion exposure combined with UV light is demonstrated, that is able to significantly reduce surface oxygen vacancy concentration and improve the field effect mobility to values up to 41 cm2 V-1 s-1 with high on-off current ratio of 108 . The treatment also reduces the threshold voltage shift after 2 days in air from 5 to 0.07 V. The improved stability of the oxide transistors also improves the lifetime of hybrid complementary circuits and stable operation of complementary, analog amplifiers is confirmed for 60 days in air. The suggested approach is facile and can be widely applicable for flexible electronics using low-temperature solution-processed metal oxide semiconductors.
RESUMEN
Doping-induced solubility control (DISC) patterning is a recently developed technique that uses the change in polymer solubility upon doping, along with an optical dedoping process, to achieve high-resolution optical patterning. DISC patterning can produce features smaller than predicted by the diffraction limit; however, no mechanism has been proposed to explain such high resolution. Here, we use diffraction to spatially modulate the light intensity and determine the dissolution rate, revealing a superlinear dependence on light intensity. This rate law is independent of wavelength, indicating that patterning resolution is not dominated by an optical dedoping reaction, as was previously proposed. Instead we show here that the optical patterning mechanism is primarily controlled by the thermal profile generated by the laser. To quantify this effect, the thermal profile and dissolution rate are modeled using a finite-element model and compared against patterned line cross sections as a function of wavelength, laser intensity, and dwell time. Our model reveals that although the laser-generated thermal profile is broadened considerably beyond the profile of the laser, the highly temperature dependent dissolution rate results in selective dissolution near the peak of the thermal profile. Therefore, the key factor in achieving super-resolution patterning is a strongly temperature dependent dissolution rate, a common feature of many polymers. In addition to suggesting several routes to improved resolution, our model also demonstrates that doping is not required for optical patterning of conjugated polymers, as was previously believed. Instead, we demonstrate that superlinear resolution optical patterning should be attainable in any conjugated polymer simply by tuning the solvent quality during patterning, thus extending the applicability of our method to a wide class of materials. We demonstrate the generality of photothermal patterning by writing sub-400 nm features into undoped PffBT4T-2OD.
Asunto(s)
Betacoronavirus , Trasplante de Córnea , Infecciones por Coronavirus/epidemiología , Pandemias , Neumonía Viral/epidemiología , COVID-19 , Enfermedades de la Córnea/cirugía , Infecciones por Coronavirus/transmisión , Infecciones Virales del Ojo/prevención & control , Infecciones Virales del Ojo/transmisión , Humanos , Internacionalidad , Neumonía Viral/transmisión , Guías de Práctica Clínica como Asunto , SARS-CoV-2RESUMEN
Optoelectronic devices based on conjugated polymers often rely on multilayer device architectures, as it is difficult to design all the different functional requirements, in particular the need for efficient luminescence and fast carrier transport, into a single polymer. Here we study the photophysics of a recently discovered class of conjugated polymers with high charge carrier mobility and low degree of energetic disorder and investigate whether it is possible in this system to achieve by molecular design a high photoluminescence quantum yield without sacrificing carrier mobility. Tracing exciton dynamics over femtosecond to microsecond time scales, we show that nearly all nonradiative exciton recombination arises from interactions between chromophores on different chains. We evaluate the temperature dependence and role of electron-phonon coupling leading to fast internal conversion in systems with strong interchain coupling and the extent to which this can be turned off by varying side chain substitution. By sterically decreasing interchain interaction, we present an effective approach to increase the fluorescence quantum yield of low-energy gap polymers. We present a red-NIR-emitting amorphous polymer with the highest reported film luminescence quantum efficiency of 18% whose mobility concurrently exceeds that of amorphous-Si. This is a key result toward the development of single-layer optoelectronic devices that require both properties.
RESUMEN
Efficient conjugated polymer optoelectronic devices benefit from concomitantly high luminescence and high charge carrier mobility. This is difficult to achieve, as interchain interactions, which are needed to ensure efficient charge transport, tend also to reduce radiative recombination and lead to solid-state quenching effects. Many studies detail strategies for reducing these interactions to increase luminescence, or modifying chain packing motifs to improve percolation charge transport; however achieving these properties together has proved elusive. Here, we show that properly designed amorphous donor-alt-acceptor conjugated polymers can circumvent this problem; combining a tuneable energy gap, fast radiative recombination rates and luminescence quantum efficiencies >15% with high carrier mobilities exceeding 2.4 cm2/Vs. We use photoluminescence from exciton states pinned to close-crossing points to study the interplay between mobility and luminescence. These materials show promise towards realising advanced optoelectronic devices based on conjugated polymers, including electrically-driven polymer lasers.
RESUMEN
Charge transport in conjugated polymer semiconductors has traditionally been thought to be limited to a low-mobility regime by pronounced energetic disorder. Much progress has recently been made in advancing carrier mobilities in field-effect transistors through developing low-disorder conjugated polymers. However, in diodes these polymers have to date not shown much improved mobilities, presumably reflecting the fact that in diodes lower carrier concentrations are available to fill up residual tail states in the density of states. Here, we show that the bulk charge transport in low-disorder polymers is limited by water-induced trap states and that their concentration can be dramatically reduced through incorporating small molecular additives into the polymer film. Upon incorporation of the additives we achieve space-charge limited current characteristics that resemble molecular single crystals such as rubrene with high, trap-free SCLC mobilities up to 0.2 cm2/Vs and a width of the residual tail state distribution comparable to kBT.
RESUMEN
Ocean plates conductively cool and subside with seafloor age. Plate thickening with age is also predicted, and hot spots may cause thinning. However, both are debated and depend on the way the plate is defined. Determining the thickness of the plates along with the process that governs it has proven challenging. We use S-to-P (Sp) receiver functions to image a strong, persistent LAB beneath Iceland where the mid-Atlantic Ridge interacts with a plume with hypothesized pulsating thermal anomaly. The plate is thickest, up to 84 ± 6 km, beneath lithosphere formed during times of hypothesized hotter plume temperatures and as thin as 61 ± 6 km beneath regions formed during colder intervals. We performed geodynamic modeling to show that these plate thicknesses are inconsistent with a thermal lithosphere. Instead, periods of increased plume temperatures likely increased the melting depth, causing deeper depletion and dehydration, and creating a thicker plate. This suggests plate thickness is dictated by the conditions of plate formation.
RESUMEN
The exploration of a wide range of molecular structures has led to the development of high-performance conjugated polymer semiconductors for flexible electronic applications including displays, sensors, and logic circuits. Nevertheless, many conjugated polymer field-effect transistors (OFETs) exhibit nonideal device characteristics and device instabilities rendering them unfit for industrial applications. These often do not originate in the material's intrinsic molecular structure, but rather in external trap states caused by chemical impurities or environmental species such as water. Here, a highly efficient mechanism is demonstrated for the removal of water-induced traps that are omnipresent in conjugated polymer devices even when processed in inert environments; the underlying mechanism is shown, by which small-molecular additives with water-binding nitrile groups or alternatively water-solvent azeotropes are capable of removing water-induced traps leading to a significant improvement in OFET performance. It is also shown how certain polymer structures containing strong hydrogen accepting groups will suffer from poor performances due to their high susceptibility to interact with water molecules; this allows the design guidelines for a next generation of stable, high-performing conjugated polymers to be set forth.
RESUMEN
BACKGROUND: The burden oral anticoagulation is a limitation of mechanical valve prostheses. OBJECTIVES: The aim of this study was to test whether patients could be safely managed with dual-antiplatelet therapy (DAPT) (aspirin 325 mg and clopidogrel 75 mg) or lower warfarin after On-X mechanical aortic valve replacement (mAVR). METHODS: PROACT (Prospective Randomized On-X Anticoagulation Trial) (n = 576) is a multicenter (41 sites) noninferiority trial. From June 2006 through February 2014, 201 patients ≥18 years of age without thromboembolic risk factors undergoing mAVR were randomized to receive DAPT (n = 99) or standard warfarin plus aspirin (n = 102) 3 months after mAVR (low-risk arm). From June 2006 through October 2009, 375 patients with 1 or more thromboembolic risk factors were also randomized to lower intensity warfarin plus aspirin (international normalized ratio 1.5 to 2.0; n = 185) or standard warfarin plus aspirin (international normalized ratio 2.0 to 3.0; n = 190) 3 months after mAVR (high-risk arm). RESULTS: The low-risk arm was terminated for excess cerebral thromboembolic events (3.12% per patient-year vs. 0.29% per patient-year, p = 0.02) in the DAPT group at up to 8.8-year follow-up (631.6 patient-years), with no differences in bleeding or all-cause mortality. High-risk arm patients experienced significantly lower major (1.59% per patient-year vs. 3.94% per patient-year, p = 0.002) and minor (1.27% per patient-year vs. 3.49% per patient-year, p = 0.002) bleeding up to 8.7-year follow-up (2,035.2 patient-years), with no differences in thromboembolism (0.42% per patient-year vs. 0.09% per patient-year, p = 0.20) and all-cause mortality. CONCLUSIONS: DAPT was associated with higher rates of thromboembolism and valve thrombosis compared with control in the low-risk arm. International normalized ratios were safely maintained at 1.5 to 2.0 in high-risk patients, without differences in mortality or thromboembolic complications. (Randomized On-X Anticoagulation Trial [PROACT]; NCT00291525).
Asunto(s)
Anticoagulantes/administración & dosificación , Válvula Aórtica/cirugía , Implantación de Prótesis de Válvulas Cardíacas , Inhibidores de Agregación Plaquetaria/administración & dosificación , Complicaciones Posoperatorias/prevención & control , Tromboembolia/prevención & control , Adulto , Anciano , Aspirina/administración & dosificación , Clopidogrel/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Warfarina/administración & dosificaciónAsunto(s)
Cuerpo Ciliar/patología , Limbo de la Córnea/patología , Nevo Pigmentado/diagnóstico , Donantes de Tejidos , Neoplasias de la Úvea/diagnóstico , Biomarcadores de Tumor/metabolismo , Cuerpo Ciliar/metabolismo , Bancos de Ojos , Enucleación del Ojo , Humanos , Antígeno Ki-67/metabolismo , Limbo de la Córnea/metabolismo , Antígeno MART-1/metabolismo , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Nevo Pigmentado/metabolismo , Proteínas S100/metabolismo , Neoplasias de la Úvea/metabolismoRESUMEN
Rifting and magmatism are fundamental geological processes that shape the surface of our planet. A relationship between the two is widely acknowledged but its precise nature has eluded geoscientists and remained controversial. Largely on the basis of detailed observations from the North Atlantic Ocean, mantle temperature was identified as the primary factor controlling magmatic production, with most authors seeking to explain observed variations in volcanic activity at rifted margins in terms of the mantle temperature at the time of break-up. However, as more detailed observations have been made at other rifted margins worldwide, the validity of this interpretation and the importance of other factors in controlling break-up style have been much debated. One such observation is from the northwest Indian Ocean, where, despite an unequivocal link between an onshore flood basalt province, continental break-up and a hot-spot track leading to an active ocean island volcano, the associated continental margins show little magmatism. Here we reconcile these observations by applying a numerical model that accounts explicitly for the effects of earlier episodes of extension. Our approach allows us to directly compare break-up magmatism generated at different locations and so isolate the key controlling factors. We show that the volume of rift-related magmatism generated, both in the northwest Indian Ocean and at the better-known North Atlantic margins, depends not only on the mantle temperature but, to a similar degree, on the rift history. The inherited extensional history can either suppress or enhance melt generation, which can explain previously enigmatic observations.
RESUMEN
Transplanting human tissue to the front of the eye has been practiced for over 100 years. Contiguous corneal layers may be transplanted separately (lamellar keratoplasty) or together (full thickness or penetrating keratoplasty). The former methods are gaining in popularity, replacing full thickness transplants. Reasons for transplantation and current practice and techniques are described with respect to their impact on vision, and associated adverse events.
Asunto(s)
Enfermedades de la Córnea/cirugía , Trasplante de Córnea/instrumentación , Trasplante de Córnea/métodos , Lesiones Oculares/cirugía , Trasplante Homólogo/instrumentación , Trasplante Homólogo/métodos , HumanosRESUMEN
Currently, cryopreservation is the only method that offers the prospect of truly long-term storage of living cells and tissues. Despite some successful cryopreserved corneal grafts, freezing has been shown to damage the endothelium. When isolated cells are frozen, there are two principal mechanisms of damage: intracellular freezing, which occurs at high cooling rates, and solution effect injury at low cooling rates. When tissues are frozen, there are additional factors that appear to render cells more susceptible to intracellular freezing. Lower cooling rates appear to overcome this when freezing cornea. Vitrification is a way of achieving ice-free cryopreservation, but it also poses considerable challenges owing to the very high solute concentrations required to achieve vitrification at practicable cooling rates. Encouraging results have also been reported for cornea frozen using non-permeating cryoprotectants, which could lead to simpler methods of corneal cryopreservation.
Asunto(s)
Córnea , Criopreservación/métodos , Bancos de Ojos/métodos , Preservación de Órganos/métodos , Trasplante de Córnea , Crioprotectores , HumanosRESUMEN
Perfluorooctanesulfonyl fluoride-based products have included surfactants, paper and packaging treatments, and surface protectants (e.g., for carpet, upholstery, textile). Depending on the specific functional derivatization or degree of polymerization, such products may degrade or metabolize, to an undetermined degree, to perfluorooctanesulfonate (PFOS), a stable and persistent end product that has the potential to bioaccumulate. In this investigation, a total of 645 adult donor serum samples from six American Red Cross blood collection centers were analyzed for PFOS and six other fluorochemicals using HPLC-electrospray tandem mass spectrometry. PFOS concentrations ranged from the lower limit of quantitation of 4.1 ppb to 1656.0 ppb with a geometric mean of 34.9 ppb [95% confidence interval (CI), 33.3-36.5]. The geometric mean was higher among males (37.8 ppb; 95% CI, 35.5-40.3) than among females (31.3 ppb; 95% CI, 30.0-34.3). No substantial difference was observed with age. The estimate of the 95% tolerance limit of PFOS was 88.5 ppb (upper limit of 95% CI, 100.0 ppb). The measures of central tendency for the other fluorochemicals (N-ethyl perfluorooctanesulfonamidoacetate, N-methyl perfluorooctanesulfonamidoacetate, perfluorooctanesulfonamidoacetate, perfluorooctanesulfonamide, perfluorooctanoate, and perfluorohexanesulfonate) were approximately an order of magnitude lower than PFOS. Because serum PFOS concentrations correlate with cumulative human exposure, this information can be useful for risk characterization.