Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 1767: 19-63, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29524128

RESUMEN

The completion of genome, epigenome, and transcriptome mapping in multiple cell types has created a demand for precision biomolecular tools that allow researchers to functionally manipulate DNA, reconfigure chromatin structure, and ultimately reshape gene expression patterns. Epigenetic editing tools provide the ability to interrogate the relationship between epigenetic modifications and gene expression. Importantly, this information can be exploited to reprogram cell fate for both basic research and therapeutic applications. Three different molecular platforms for epigenetic editing have been developed: zinc finger proteins (ZFs), transcription activator-like effectors (TALEs), and the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins. These platforms serve as custom DNA-binding domains (DBDs), which are fused to epigenetic modifying domains to manipulate epigenetic marks at specific sites in the genome. The addition and/or removal of epigenetic modifications reconfigures local chromatin structure, with the potential to provoke long-lasting changes in gene transcription. Here we summarize the molecular structure and mechanism of action of ZF, TALE, and CRISPR platforms and describe their applications for the locus-specific manipulation of the epigenome. The advantages and disadvantages of each platform will be discussed with regard to genomic specificity, potency in regulating gene expression, and reprogramming cell phenotypes, as well as ease of design, construction, and delivery. Finally, we outline potential applications for these tools in molecular biology and biomedicine and identify possible barriers to their future clinical implementation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Edición Génica/métodos , Efectores Tipo Activadores de la Transcripción/metabolismo , Dedos de Zinc , Animales , Proteínas Bacterianas/química , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/química , Sitios Genéticos , Genoma , Humanos , Modelos Moleculares , Efectores Tipo Activadores de la Transcripción/química , Xanthomonas/química , Xanthomonas/metabolismo
2.
Oncotarget ; 7(37): 60535-60554, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27528034

RESUMEN

The aberrant epigenetic silencing of tumor suppressor genes (TSGs) plays a major role during carcinogenesis and regaining these dormant functions by engineering of sequence-specific epigenome editing tools offers a unique opportunity for targeted therapies. However, effectively normalizing the expression and regaining tumor suppressive functions of silenced TSGs by artificial transcription factors (ATFs) still remains a major challenge. Herein we describe novel combinatorial strategies for the potent reactivation of two class II TSGs, MASPIN and REPRIMO, in cell lines with varying epigenetic states, using the CRISPR/dCas9 associated system linked to a panel of effector domains (VP64, p300, VPR and SAM complex), as well as with protein-based ATFs, Zinc Fingers and TALEs. We found that co-delivery of multiple effector domains using a combination of CRISPR/dCas9 and TALEs or SAM complex maximized activation in highly methylated promoters. In particular, CRISPR/dCas9 VPR with SAM upregulated MASPIN mRNA (22,145-fold change) in H157 lung cancer cells, with accompanying re-expression of MASPIN protein, which led to a concomitant inhibition of cell proliferation and induction of apoptotic cell death. Consistently, CRISPR/dCas9 VP64 with SAM upregulated REPRIMO (680-fold change), which led to phenotypic reprogramming in AGS gastric cancer cells. Altogether, our results outlined novel sequence-specific, combinatorial epigenome editing approaches to reactivate highly methylated TSGs as a promising therapy for cancer and other diseases.


Asunto(s)
Sistemas CRISPR-Cas/genética , Proteínas de Homeodominio/genética , Neoplasias Pulmonares/metabolismo , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Motivo alfa Estéril/genética , Neoplasias Gástricas/metabolismo , Dedos de Zinc/genética , Apoptosis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Serpinas/genética , Serpinas/metabolismo , Neoplasias Gástricas/genética , Activación Transcripcional , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA