Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 608(Pt 1): 903-911, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34785465

RESUMEN

The selection of layered number and time-course destruction of layers may affect the charge transfer between 2D-to-1D heterostructure, making it possible to improve the efficiency of solar-to-hydrogen evolution. Herein, we demonstrate a simple, low-cost systematic protocol of 2D-WSe2 nanolayer numbers ranging from 7 to 60 aiding the ultrasonication time-course. The resultant nanolayers were assembled on the surface of 1D-CdS nanorods, which demonstrated an improved surface shuttling property. Consequently, a drastic improvement in photocatalytic solar-driven hydrogen evolution was observed (103.5 mmol h-1 g-1) with seven-layered WSe2 (few-layered WSe2) attached on CdS nanorods surface. This enhanced photocatalytic performance is attributed to the selection of layers on CdS surface that expose abundant active sites; along with suitable energy levels, this can facilitate increased charge transfer leading to feasible photocatalytic reactions. Significantly, the present study proposes an efficient and sustainable process to produce hydrogen and demonstrates the potential of numbered WSe2 nanosheets as a co-catalyst material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA