Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Rep (Amst) ; 41: e00831, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38375210

RESUMEN

The potential of an integrated fixed film activated sludge (IFAS) bioreactor for developing simultaneous aerobic and anoxic micro-zones under continuous aeration regime to promote carbon and nitrogen removal from Faraman industrial estate wastewater was evaluated in the present research. The effects of three independent variables on carbon and nitrogen removal were assessed. Overall, the optimum condition with 94 %, 77 %, and 2 NTU of COD (chemical oxygen demand) removal, Total nitrogen (TN) removal, and effluent turbidity has been specified with hydraulic retention time (HRT) of 11 h, air flow rate (AFR) of 3.5 L/min, and filling ratio (FR) of 50 %. To assess the stability of treating processes in the system, the IFAS system was operated in this optimal condition. Moreover, the simulation of the bioreactor was accomplished via calibration and verification of GPS-X model. GPSX simulation results and experimental data were compared using an independent sample T-test, which the T-test result confirmed that there was no significant difference between them.

2.
Environ Sci Pollut Res Int ; 29(25): 37144-37158, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35031989

RESUMEN

As discharging oily wastewater from industries to the environment is a potential threat for the aquatic ecosystem, in this research, oil removal from a real case of Kermanshah polymer production plant wastewater was investigated. The focus of this study was on improving the oil rejection performance of polyethersulfone (PES) ultrafiltration membrane due to adding cellulose nanocrystals (CNC) and modified CNC with serine amino acid (CNC-Ser) in PES mix matrix. From the results, the membranes embedded with CNC-Ser showed better performance in terms of water flux, flux recovery ratio, and oil rejection (higher than 97%) compared to the modified membranes with CNC. The lowest water contact angle (41.37°), smoother surface, and higher negative surface potential (- 24 mV) were achieved for the optimum loading of CNC-Ser. Besides, long-term performance of the membranes with optimum loading of CNC and CNC-Ser were compared in both dead-end and cross-flow setups.


Asunto(s)
Nanopartículas , Ultrafiltración , Celulosa/química , Ecosistema , Membranas Artificiales , Nanopartículas/química , Polímeros/química , Serina , Sulfonas , Aguas Residuales , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA