Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Radiat Res ; 183(1): 1-26, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25564719

RESUMEN

During space travel astronauts are exposed to a variety of radiations, including galactic cosmic rays composed of high-energy protons and high-energy charged (HZE) nuclei, and solar particle events containing low- to medium-energy protons. Risks from these exposures include carcinogenesis, central nervous system damage and degenerative tissue effects. Currently, career radiation limits are based on estimates of fatal cancer risks calculated using a model that incorporates human epidemiological data from exposed populations, estimates of relative biological effectiveness and dose-response data from relevant mammalian experimental models. A major goal of space radiation risk assessment is to link mechanistic data from biological studies at NASA Space Radiation Laboratory and other particle accelerators with risk models. Early phenotypes of HZE exposure, such as the induction of reactive oxygen species, DNA damage signaling and inflammation, are sensitive to HZE damage complexity. This review summarizes our current understanding of critical areas within the DNA damage and oxidative stress arena and provides insight into their mechanistic interdependence and their usefulness in accurately modeling cancer and other risks in astronauts exposed to space radiation. Our ultimate goals are to examine potential links and crosstalk between early response modules activated by charged particle exposure, to identify critical areas that require further research and to use these data to reduced uncertainties in modeling cancer risk for astronauts. A clearer understanding of the links between early mechanistic aspects of high-LET response and later surrogate cancer end points could reveal key nodes that can be therapeutically targeted to mitigate the health effects from charged particle exposures.


Asunto(s)
Carcinogénesis , Radiación Cósmica/efectos adversos , Daño del ADN , Reparación del ADN/efectos de la radiación , Exposición a Riesgos Ambientales/efectos adversos , Neoplasias Inducidas por Radiación/patología , Especies Reactivas de Oxígeno/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/efectos de la radiación , Humanos , Inflamación/etiología , Inflamación/genética , Inflamación/metabolismo , Neoplasias Inducidas por Radiación/etiología , Neoplasias Inducidas por Radiación/genética , Neoplasias Inducidas por Radiación/metabolismo
2.
Cell Death Differ ; 15(2): 344-53, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18007664

RESUMEN

There is considerable interest in understanding how inflammatory responses influence cell proliferation and cancer. In this study, we show that the receptor-interacting protein (RIP1), a critical mediator of inflammation and stress-induced NF-kappaB activation, regulates the expression of the epidermal growth factor receptor (EGFR). Mouse embryo fibroblasts (MEFs) derived from RIP1 knockout mice express very high levels of the EGFR. Reconstitution of RIP1(-/-) MEFs with RIP1 results in a lowering of EGFR levels. RIP1 influences EGFR at the mRNA level by regulating the EGFR promoter. Expression of RIP1 inhibits the EGFR promoter. RIP1 downregulates EGFR expression by interfering with the function of Sp1, which is a key activator of EGFR transcription. RIP1 suppresses Sp1 activity and overexpression of Sp1 reverses RIP1-mediated repression of the EGFR promoter. RIP1 is present both in the cytoplasm and in the nucleus. RIP1 coimmunoprecipitates with Sp1 in vivo and binds directly to Sp1 in vitro. A RIP1 mutant lacking the death domain fails to suppress Sp1 activity and the EGFR promoter, suggesting a critical role for the RIP1 death domain in EGFR regulation. Thus, our study identifies a new link between inflammatory and growth factor signaling pathways mediated by RIP1 and provides insight into the mechanism used by RIP1 to regulate EGFR levels.


Asunto(s)
Receptores ErbB/metabolismo , FN-kappa B/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Factor de Transcripción Sp1/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , ADN/metabolismo , Regulación hacia Abajo , Receptores ErbB/genética , Humanos , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteínas Recombinantes/metabolismo , Factor de Transcripción Sp1/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA