RESUMEN
Type 2 diabetes mellitus (T2DM) and cancer share common risk factors including obesity, inflammation, hyperglycemia, and hyperinsulinemia. High insulin levels activate the PI3K/Akt/mTOR signaling pathway promoting cancer cell growth, survival, proliferation, metastasis, and anti-apoptosis. The inhibition of the PI3K/Akt/mTOR signaling pathway for cancer remains a promising therapy; however, drug resistance poses a major problem in clinical settings resulting in limited efficacy of agents; thus, combination treatments with therapeutic inhibitors may solve the resistance to such agents. Understanding the metabolic link between diabetes and cancer can assist in improving the therapeutic strategies used for the management of cancer patients with diabetes and vice versa. This review provides an overview of shared molecular mechanisms between diabetes and cancer as well as discusses established and emerging therapeutic anti-cancer agents targeting the PI3K/Akt/mTOR pathway in cancer management.
RESUMEN
Cten is an oncogene promoting EMT in many signaling pathways, namely through Snail. We investigated whether Cten function could be mediated through Src. Cten levels were modulated by forced expression in HCT116 and gene knockdown in SW620 CRC (colorectal cancer) cell lines. In all cell lines, Cten was a positive regulator of Src expression. The functional importance of Src was tested by simultaneous Cten overexpression and Src knockdown. This resulted in abrogation of Cten motility-inducing activity and reduction of colony formation ability together with failure to induce Cten targets. In SW620ΔCten reduced Src expression increased following restoration of Cten, also leading to increased cell motility and colony formation, which were lost if Src was concomitantly knocked down. By qRT-PCR we showed modulation of Cten had no effect on Src mRNA. However, a CHX pulse chase assay demonstrated stabilization of Src protein by Cten. Finally, expression of Cten and Src was tested in a series of 84 primary CRCs and there was a significant correlation between them (P = 0.001). We conclude that Src is a novel and functionally important target of the Cten signaling pathway and that Cten protein causes post-transcriptional stabilization of Src in promoting EMT and possibly metastasis in CRC.
Asunto(s)
Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Genes src , Tensinas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/fisiología , Neoplasias Colorrectales/genética , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismoRESUMEN
AIMS: We sought to use PCR followed by high-resolution melting analysis to develop a single closed-tube screening panel to screen for Lynch syndrome. This comprises tests for microsatellite instability (MSI), MLH1 methylation promoter and BRAF mutation. METHODS: For MSI testing, five mononucleotide markers (BAT25, BAT26, BCAT25, MYB, EWSR1) were developed. In addition, primers were designed to interrogate Region C of the MLH1 promoter for methylation (using bisulphite-modified DNA) and to test for mutations in codon 600 of BRAF. Two separate cohorts from Nottingham (n=99, 46 with MSI, 53 being microsatellite stable (MSS)) and Edinburgh (n=88, 45 MSI, 43 MSS) were tested. RESULTS: All the cases (n=187) were blind tested for MSI and all were correctly characterised by our panel. The MLH1 promoter and BRAF were tested only in the Nottingham cohort. Successful blinded analysis was performed on the MLH1 promoter in 97 cases. All MSS cases showed a pattern of non-methylation while 41/44 cases with MSI showed full methylation. The three cases with MSI and a non-methylated pattern had aberrations in MSH2 and MSH6 expression. BRAF mutation was detected in 61% of MSI cases and 11% of MSS cases.Finally, 12 cases were blind screened by using the whole panel as a single test. Of these, five were identified as MSS, four as MSI/non-LS and three as MSI/possible LS. These results were concordant with the previous data. CONCLUSION: We describe the Nottingham Lynch Syndrome Test (N_LyST). This is a quick, simple and cheap method for screening for Lynch syndrome.
Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Metilación de ADN , Análisis Mutacional de ADN/métodos , Perfilación de la Expresión Génica/métodos , Inestabilidad de Microsatélites , Homólogo 1 de la Proteína MutL/genética , Mutación , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas B-raf/genética , Predisposición Genética a la Enfermedad , Células HCT116 , Humanos , Fenotipo , Valor Predictivo de las Pruebas , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , Flujo de TrabajoRESUMEN
Currently, short DNA segments of sub-100 bp can be sequenced either directly by next-generation sequencing and pyrosequencing, which are expensive, or indirectly, via Sanger sequencing combined with the cumbersome and failure-prone plasmid cloning. To circumvent these issues, we have generated a novel sequencing-purposed PCR assay using long-tailed primers (squirrel primers) to Sanger sequence directly sub-100 bp genomic amplicons. Squirrel primers, 40-65 nt in length, were used to amplify 51-93 bp long genomic sequences of KRAS exons 2 and 3, BRAF exon 15, PI3K catalytic subunit alpha exon 20, and phosphatase and tensin homolog exon 3 from colorectal cancer (CRC) cell lines and preamplified clinical CRC samples with known mutation status by PCR. Following this, a short second pair of primers that bind at the 5' region of the long tails was used for sequencing on the 3130 × l ABI Prism Genetic Analyzer. The sequencing data were analyzed via FinchTV software. High-quality sequencing data were obtained from 51 to 93 bp long genomic sequences with our novel PCR assay, with capture of all of the target sequences in all of the samples in both the forward and reverse directions and confirmation of the mutation status of the CRC samples. Whereas the sequencing quality was independent of the template type, it showed a squirrel primer tail length-dependent pattern. Our novel PCR assay for direct and targeted Sanger sequencing of short genomic segments has potential applications in focused molecular/genetic profiling of cancer in research and diagnostics fields in which fragmented DNA, such as circulating tumor DNA and archival tissue DNA, are used as starting templates.
Asunto(s)
ADN/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa/métodos , Cartilla de ADN/genética , Exones/genética , Humanos , Mutación/genéticaRESUMEN
AIMS: We previously described the quick multiplex consensus PCR (QMC-PCR) as a method for rapid mutation screening in low-quality template. QMC-PCR has two-stages: a prediagnostic multiplex (PDM) reaction followed by a single specific diagnostic reaction with high-resolution melting (HRM) analysis. We aimed to develop QMC-PCRx in which second stage was multiplexed to allow testing of multiple targets. METHODS: The PDM reaction was retained without change. For the second stage, in silico design was used to identify targets amenable to a multiplex specific diagnostic reaction and multiplex HRM (mHRM) analysis. Following optimisation, 17 colorectal cancers were tested for mutation in five hotspots. For QMC-PCR, each target was tested individually. For QMC-PCRx, the targets were tested in the following combinations (i) KRAS exon 3/PIK3CA exon 20/PTEN exon 3 in triplex and (ii) PTEN exon 7/NRAS exon 2 in duplex. The degree of agreement between the novel QMC-PCRx and the standard QMC-PCR was tested by the percentage concordance. RESULTS: Optimisation of mHRM showed that peaks needed to be separated (without overlap) and the optimal number was three targets per test. Our experimental design produced distinct and widely separated peaks for the individual targets although one of the primers needed a GC-tail. A total of 85 individual targets were tested; this required 85â second-stage PCR/HRM tests by QMC-PCR versus 34â second-stage tests by QMC-PCRx. The percentage concordance between the singleplex and multiplex methodologies was 100%. CONCLUSIONS: A multiplexed analysis using HRM is possible without loss of diagnostic accuracy. The novel QMC-PCRx protocol can significantly reduce workload and costs of mutation screening.