Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharmacol ; 96(1): 13-25, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31043460

RESUMEN

Pancreatic cancer is one of the most lethal types of tumors with no effective therapy available; is currently the third leading cause of cancer in developed countries; and is predicted to become the second deadliest cancer in the United States by 2030. Due to the marginal benefits of current standard chemotherapy, the identification of new therapeutic targets is greatly required. Considering that cAMP pathway is commonly activated in pancreatic ductal adenocarcinoma (PDAC) and its premalignant lesions, we aim to investigate the multidrug resistance-associated protein 4 (MRP4)-dependent cAMP extrusion process as a cause of increased cell proliferation in human PDAC cell lines. Our results from in silico analysis indicate that MRP4 expression may influence PDAC patient outcome; thus, high MRP4 levels could be indicators of poor survival. In addition, we performed in vitro experiments and identified an association between higher MRP4 expression levels and more undifferentiated and malignant models of PDAC and cAMP extrusion capacity. We studied the antiproliferative effect and the overall cAMP response of three MRP4 inhibitors, probenecid, MK571, and ceefourin-1 in PDAC in vitro models. Moreover, MRP4-specific silencing in PANC-1 cells reduced cell proliferation (P < 0.05), whereas MRP4 overexpression in BxPC-3 cells significantly incremented their growth rate in culture (P < 0.05). MRP4 pharmacological inhibition or silencing abrogated cell proliferation through the activation of the cAMP/Epac/Rap1 signaling pathway. Also, extracellular cAMP reverted the antiproliferative effect of MRP4 blockade. Our data highlight the MRP4-dependent cAMP extrusion process as a key participant in cell proliferation, indicating that MRP4 could be an exploitable therapeutic target for PDAC. SIGNIFICANCE STATEMENT: ABCC4/MRP4 is the main transporter responsible for cAMP efflux. In this work, we show that MRP4 expression may influence PDAC patient outcome and identify an association between higher MRP4 expression levels and more undifferentiated and malignant in vitro models of PDAC. Findings prove the involvement of MRP4 in PDAC cell proliferation through a novel extracellular cAMP mitogenic pathway and further support MRP4 inhibition as a promising therapeutic strategy for PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , AMP Cíclico/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Neoplasias Pancreáticas/metabolismo , Benzotiazoles/farmacología , Carcinoma Ductal Pancreático/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Células HEK293 , Humanos , Neoplasias Pancreáticas/genética , Probenecid/farmacología , Pronóstico , Propionatos/farmacología , Quinolinas/farmacología , Transducción de Señal/efectos de los fármacos , Análisis de Supervivencia , Triazoles/farmacología , Regulación hacia Arriba
2.
Thromb Res ; 125(5): e240-5, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20035973

RESUMEN

INTRODUCTION: Low-molecular-weight heparin is used clinically for the prevention of pregnancy complications associated with prothrombotic disorders, particularly anti-phospholipid syndrome. Nevertheless, recent studies have suggested that heparin may exert direct effects on the placental trophoblast, independently of its anticoagulant activity. In addition, heparin prevents complement activation in vivo and protects mice from pregnancy complications. MATERIALS AND METHODS: The inhibition of the classical complement activation pathway by heparin was analyzed by means of in vitro assays and in pregnant women receiving prophylaxis with therapeutic doses (40 mg/day) of subcutaneous low molecular weight heparin by haemolysis of antibody-sensitized sheep erythrocytes (CH(50) assay). RESULTS: The specific interaction between low-molecular-weight heparin and the C1q subunit of the C1 complex of the complement cascade allowed the isolation of a small subpopulation of heparin ( 8.03+/-1.20 microg %), with an anti-activated factor X activity more than four times greater than the starting material. This subpopulation could be responsible for the in vitro inhibition of the classical complement activation pathway evaluated by the total haemolysis of antibody-sensitized sheep erythrocytes. About 60 microg/ml of low molecular weight heparin was needed to achieve 50% of haemolysis. The detection of the classical complement pathway inhibition in pregnant women treated with heparin required a first activation with aggregated human IgG. CONCLUSIONS: We concluded that the interaction between low-molecular-weight heparin and C1q could be relevant not only in the complement-dependent, but also in the complement-independent inflammation mechanisms responsible for the prevention of pregnancy loss.


Asunto(s)
Vía Clásica del Complemento/efectos de los fármacos , Vía Clásica del Complemento/inmunología , Heparina de Bajo-Peso-Molecular/administración & dosificación , Adolescente , Adulto , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Embarazo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA