Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
3.
Biomed Pharmacother ; 177: 116988, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38897157

RESUMEN

Therapeutic monoclonal antibodies have been successful in protecting vulnerable populations against SARS-CoV-2. However, their effectiveness has been hampered by the emergence of new variants. To adapt the therapeutic landscape, health authorities have based their recommendations mostly on in vitro neutralization tests. However, these do not provide a reliable understanding of the changes in the dose-effect relationship and how they may translate into clinical efficacy. Taking the example of EvusheldTM (AZD7442), we aimed to investigate how in vivo data can provide critical quantitative results and project clinical effectiveness. We used the Golden Syrian hamster model to estimate 90 % effective concentrations (EC90) of AZD7442 in vivo against SARS-CoV-2 Omicron BA.1, BA.2 and BA.5 variants. While our in vivo results confirmed the partial loss of AZD7442 activity for BA.1 and BA.2, they showed a much greater loss of efficacy against BA.5 than that obtained in vitro. We analyzed in vivo EC90s in perspective with antibody levels measured in a cohort of immunocompromised patients who received 300 mg of AZD7442. We found that a substantial proportion of patients had serum levels of anti-SARS-CoV-2 spike protein IgG above the estimated in vivo EC90 for BA.1 and BA.2 (21 % and 92 % after 1 month, respectively), but not for BA.5. These findings suggest that AZD7442 is likely to retain clinical efficacy against BA.2 and BA.1, but not against BA.5. Overall, the present study illustrates the importance of complementing in vitro investigations by preclinical studies in animal models to help predict the efficacy of monoclonal antibodies in humans.

4.
Haematologica ; 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38841782

RESUMEN

Non-Hodgkin lymphomas (NHL) commonly occur in immune-deficient (ID) patients, both HIV-infected and transplanted, and are often EBV-driven with cerebral localization, raising the question of tumor immunogenicity, a critical issue for treatment responses. We investigated the immunogenomics of 68 lymphoproliferative disorders from 51 ID (34 posttransplant, 17 HIV+) and 17 immunocompetent patients. Overall, 72% were Large B Cells Lymphoma (LBCL) and 25% were primary central-nervous-system lymphoma (PCNSL) while 40% were EBV-positive. Tumor whole-exome and RNA sequencing, along with a bioinformatics pipeline allowed analysis of tumor mutational burden (TMB), tumor landscape and microenvironment (TME) and prediction of tumor neoepitopes. Both TMB (2.2 vs 3.4/Mb, p=0.001) and neoepitopes numbers (40 vs 200, p=0.00019) were lower in EBVpositive than in EBV-negative NHL, regardless of the immune status. In contrast both EBV and the immune status influenced the tumor mutational profile, with HNRNPF and STAT3 mutations exclusively observed in EBV-positive and ID NHL, respectively. Peripheral blood T-cell responses against tumor neoepitopes were detected in all EBV-negative cases but in only half EBV-positive ones, including responses against IgH-derived MHC-class-II restricted neoepitopes. The TME analysis showed higher CD8 T cell infiltrates in EBVpositive vs EBV-negative NHL, together with a more tolerogenic profile composed of Tregs, type-M2 macrophages and an increased expression of negative immune-regulators. Our results highlight that the immunogenomics of NHL in patients with immunodeficiency primarily relies on the tumor EBV status, while T cell recognition of tumor- and IgH-specific neoepitopes is conserved in EBV-negative patients, offering potential opportunities for future T cell-based immune therapies.

5.
PLoS One ; 19(5): e0302684, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722858

RESUMEN

BACKGROUND: In most cases, Zika virus (ZIKV) causes a self-limited acute illness in adults, characterized by mild clinical symptoms that resolve within a few days. Immune responses, both innate and adaptive, play a central role in controlling and eliminating virus-infected cells during the early stages of infection. AIM: To test the hypothesis that circulating T cells exhibit phenotypic and functional activation characteristics during the viremic phase of ZIKV infection. METHODS: A comprehensive analysis using mass cytometry was performed on peripheral blood mononuclear cells obtained from patients with acute ZIKV infection (as confirmed by RT-PCR) and compared with that from healthy donors (HD). The frequency of IFN-γ-producing T cells in response to peptide pools covering immunogenic regions of structural and nonstructural ZIKV proteins was quantified using an ELISpot assay. RESULTS: Circulating CD4+ and CD8+ T lymphocytes from ZIKV-infected patients expressed higher levels of IFN-γ and pSTAT-5, as well as cell surface markers associated with proliferation (Ki-67), activation ((HLA-DR, CD38) or exhaustion (PD1 and CTLA-4), compared to those from HD. Activation of CD4+ and CD8+ memory T cell subsets, including Transitional Memory T Cells (TTM), Effector Memory T cells (TEM), and Effector Memory T cells Re-expressing CD45RA (TEMRA), was prominent among CD4+ T cell subset of ZIKV-infected patients and was associated with increased levels of IFN-γ, pSTAT-5, Ki-67, CTLA-4, and PD1, as compared to HD. Additionally, approximately 30% of ZIKV-infected patients exhibited a T cell response primarily directed against the ZIKV NS5 protein. CONCLUSION: Circulating T lymphocytes spontaneously produce IFN-γ and express elevated levels of pSTAT-5 during the early phase of ZIKV infection whereas recognition of ZIKV antigen results in the generation of virus-specific IFN-γ-producing T cells.


Asunto(s)
Linfocitos T CD8-positivos , Interferón gamma , Infección por el Virus Zika , Virus Zika , Humanos , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/epidemiología , Adulto , Virus Zika/inmunología , Femenino , Masculino , Interferón gamma/metabolismo , Interferón gamma/inmunología , Brasil/epidemiología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD4-Positivos/inmunología , Persona de Mediana Edad , Adulto Joven , Epidemias , Activación de Linfocitos/inmunología , Linfocitos T/inmunología
7.
Antimicrob Agents Chemother ; 67(11): e0041723, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37874295

RESUMEN

A major barrier to HIV-1 cure is caused by the pool of latently infected CD4 T-cells that persist under combination antiretroviral therapy (cART). This latent reservoir is capable of producing replication-competent infectious viruses once prolonged suppressive cART is withdrawn. Inducing the reactivation of HIV-1 gene expression in T-cells harboring a latent provirus in people living with HIV-1 under cART may result in depletion of this latent reservoir due to cytopathic effects or immune clearance. Studies have investigated molecules that reactivate HIV-1 gene expression, but to date, no latency reversal agent has been identified to eliminate latently infected cells harboring replication-competent HIV in cART-treated individuals. Stochastic fluctuations in HIV-1 tat gene expression have been described and hypothesized to allow the progression into proviral latency. We hypothesized that exposing latently infected CD4+ T-cells to Tat would result in effective latency reversal. Our results indicate the capacity of a truncated Tat protein and mRNA to reactivate HIV-1 in latently infected T-cells ex vivo to a similar degree as the protein kinase C agonist: phorbol 12-myristate 13-acetate, without T-cell activation or any significant transcriptome perturbation.


Asunto(s)
Infecciones por VIH , VIH-1 , Activación Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Humanos , Linfocitos T CD4-Positivos , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Provirus/genética , Latencia del Virus , Replicación Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/genética , VIH-1/metabolismo
11.
Clin Microbiol Infect ; 29(2): 258.e1-258.e4, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36257549

RESUMEN

OBJECTIVES: We investigated serum neutralizing activity against BA.1 and BA.2 Omicron sublineages and T cell response before and 3 months after administration of the booster vaccine in healthcare workers (HCWs). METHODS: HCWs aged 18-65 years who were vaccinated and received booster doses of the BNT162b2 vaccine were included. Anti-SARS coronavirus 2 IgG levels and cellular response (through interferon γ ELISpot assay) were evaluated in all participants, and neutralizing antibodies against Delta, BA.1, and BA.2 were evaluated in participants with at least one follow-up visit 1 or 3 months after the administration of the booster dose. RESULTS: Among 118 HCWs who received the booster dose, 102 and 84 participants attended the 1-month and 3-month visits, respectively. Before the booster vaccine dose, a low serum neutralizing activity against Delta, BA.1, and BA.2 was detectable in only 39/102 (38.2%), 8/102 (7.8%), and 12/102 (11.8%) participants, respectively. At 3 months, neutralizing antibodies against Delta, BA.1, and BA.2 were detected in 84/84 (100%), 79/84 (94%), and 77/84 (92%) participants, respectively. Geometric mean titres of neutralizing antibodies against BA.1 and BA.2 were 2.2-fold and 2.8-fold reduced compared with those for Delta. From 1 to 3 months after the administration of the booster dose, participants with a recent history of SARS coronavirus 2 infection (n = 21/84) had persistent levels of S1 reactive specific T cells and neutralizing antibodies against Delta and BA.2 and 2.2-fold increase in neutralizing antibodies against BA.1 (p 0.014). Conversely, neutralizing antibody titres against Delta (2.5-fold decrease, p < 0.0001), BA.1 (1.5-fold, p 0.02), and BA.2 (2-fold, p < 0.0001) declined from 1 to 3 months after the administration of the booster dose in individuals without any recent infection. DISCUSSION: The booster vaccine dose provided significant and similar response against BA.1 and BA.2 Omicron sublineages; however, the immune response declined in the absence of recent infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Vacuna BNT162 , Anticuerpos Neutralizantes , Inmunidad Celular , Vacunación , Anticuerpos Antivirales
14.
Front Immunol ; 13: 844727, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529881

RESUMEN

The immunopathological pulmonary mechanisms leading to Coronavirus Disease (COVID-19)-related death in adults remain poorly understood. Bronchoalveolar lavage (BAL) and peripheral blood sampling were performed in 74 steroid and non-steroid-treated intensive care unit (ICU) patients (23-75 years; 44 survivors). Peripheral effector SARS-CoV-2-specific T cells were detected in 34/58 cases, mainly directed against the S1 portion of the spike protein. The BAL lymphocytosis consisted of T cells, while the mean CD4/CD8 ratio was 1.80 in non-steroid- treated patients and 1.14 in steroid-treated patients. Moreover, strong BAL SARS-CoV-2 specific T-cell responses were detected in 4/4 surviving and 3/3 non-surviving patients. Serum IFN-γ and IL-6 levels were decreased in steroid-treated patients when compared to non-steroid treated patients. In the lung samples from 3 (1 non-ICU and 2 ICU) additional deceased cases, a lymphocytic memory CD4 T-cell angiopathy colocalizing with SARS-CoV-2 was also observed. Taken together, these data show that disease severity occurs despite strong antiviral CD4 T cell-specific responses migrating to the lung, which could suggest a pathogenic role for perivascular memory CD4 T cells upon fatal COVID-19 pneumonia.


Asunto(s)
COVID-19 , Neumonía , Adulto , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Humanos , Pulmón , SARS-CoV-2
15.
Lancet Reg Health Eur ; 17: 100385, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35469147

RESUMEN

Background: The present study aimed to evaluate the persistent immunogenicity offered by a third dose of BNT162b2 against Delta and Omicron variants, in nursing home (NH) residents. Methods: In this monocenter prospective observational study, anti-spike IgG levels, S1 domain reactive T cell counts, serum neutralizing antibody titers against Delta and Omicron variants were compared before and up to three months after the BNT162b2 booster dose, in NH residents without COVID-19 (COVID-19 naive) or with COVID-19 prior to initial vaccination (COVID-19 recovered). Findings: 106 NH residents (median [interquartile range] age: 86·5 [81;91] years) were included. The booster dose induced a high increase of anti-spike antibody levels in all subjects (p < 0.0001) and a mild transient increase of specific T cells. Before the booster dose, Delta neutralization was detected in 19% (n = 8/43) and 88% (n = 37/42) of COVID-19 naive and COVID-19 recovered subjects, respectively. Three months after the booster dose, all NH residents developed and maintained a higher Delta neutralization (p < 0·0001). Before the booster dose, Omicron neutralization was detected in 5% (n = 2/43) and 55% (n = 23/42) of COVID-19 naive and COVID-19 recovered subjects, respectively, and three months after, in 84% and 95%, respectively. Neutralizing titers to Omicron were lower than to Delta in both groups with a 35-fold reduction compared to Delta. Interpretation: The booster dose restores high neutralization titers against Delta in all NH residents, and at a lower level against Omicron in a large majority of participants. Future studies are warranted to assess if repeated BNT162b2 booster doses or new specific vaccines might be considered for protecting such fragile patients against Omicron and/or future SARS-CoV-2 variants. Funding: French government through the Programme Investissement d'Avenir (I-SITE ULNE/ANR-16-IDEX-0004 ULNE) and the Label of COVID-19 National Research Priority (National Steering Committee on Therapeutic Trials and Other COVID-19 Research, CAPNET).

16.
Cells ; 11(6)2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35326466

RESUMEN

The role of immune checkpoints (ICPs) in both anti-HIV T cell exhaustion and HIV reservoir persistence, has suggested that an HIV cure therapeutic strategy could involve ICP blockade. We studied the impact of anti-PD-1 therapy on HIV reservoirs and anti-viral immune responses in people living with HIV and treated for cancer. At several timepoints, we monitored CD4 cell counts, plasma HIV-RNA, cell associated (CA) HIV-DNA, EBV, CMV, HBV, HCV, and HHV-8 viral loads, activation markers, ICP expression and virus-specific T cells. Thirty-two patients were included, with median follow-up of 5 months. The CA HIV-DNA tended to decrease before cycle 2 (p = 0.049). Six patients exhibited a ≥0.5 log10 HIV-DNA decrease at least once. Among those, HIV-DNA became undetectable for 10 months in one patient. Overall, no significant increase in HIV-specific immunity was observed. In contrast, we detected an early increase in CTLA-4 + CD4+ T cells in all patients (p = 0.004) and a greater increase in CTLA-4+ and TIM-3 + CD8+ T cells in patients without HIV-DNA reduction compared to the others (p ≤ 0.03). Our results suggest that ICP replacement compensatory mechanisms might limit the impact of anti-PD-1 monotherapy on HIV reservoirs, and pave the way for combination ICP blockade in HIV cure strategies.


Asunto(s)
Infecciones por VIH , Neoplasias , Antivirales/uso terapéutico , Antígeno CTLA-4 , Infecciones por VIH/metabolismo , Humanos , Inmunidad , Inmunoterapia , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/metabolismo
17.
AIDS ; 36(4): 487-499, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34581307

RESUMEN

OBJECTIVE: Spontaneous control of HIV replication without treatment in HIV-1 controllers (HICs) was associated with the development of an efficient T-cell response. In addition, increasing data suggest that the humoral response participates in viral clearance. DESIGN: In-depth characterization of Ab response in HICs may help to define new parameters associated with this control. METHODS: We assessed the levels of total and HIV-specific IgA and IgG subtypes induction and their functional potencies - that is, neutralization, phagocytosis, antibody-dependent cellular cytotoxicity (ADCC), according to the individual's major histocompatibility complex class I (HLA)-B∗57 status, and compared it with nontreated chronic progressors. RESULTS: We found that despite an undetectable viral load, HICs displayed HIV-specific IgG levels similar to those of chronic progressors. Interestingly, our compelling multifunctional analysis demonstrates that the functional Ab profile, by itself, allowed to discriminate HLA-B∗57+ HICs from HLA-B∗57- HICs and chronic progressors. CONCLUSION: These results show that HICs display a particular HIV-specific antibody (Ab) profile that may participate in HIV control and emphasize the relevance of multifunctional Ab response analysis in future Ab-driven vaccine studies.


Asunto(s)
Infecciones por VIH , VIH-1 , Anticuerpos Anti-VIH , VIH no-Progresivos , Antígenos HLA-B , Humanos , Inmunoglobulina G , Carga Viral
20.
Front Cell Dev Biol ; 9: 661272, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34710202

RESUMEN

Cell-free DNA (cfDNA) analysis is a minimally invasive method that can be used to detect genomic abnormalities by directly testing a blood sample. This method is particularly useful for immunosuppressed patients, who are at high risk of complications from tissue biopsy. The cfDNA tumor fraction (TF) varies greatly across cancer type and between patients. Thus, the detection of molecular alterations is highly dependent on the circulating TF. In our study, we aimed to calculate the TF and characterize the copy number aberration (CNA) profile of cfDNA from patients with rare malignancies occurring in immunosuppressed environments or immune-privileged sites. To accomplish this, we recruited 36 patients: 19 patients with non-Hodgkin lymphoma (NHL) who were either human immunodeficiency virus (HIV)-positive or organ transplant recipients, 5 HIV-positive lung cancer patients, and 12 patients with glioma. cfDNA was extracted from the patients' plasma and sequenced using low-coverage whole genome sequencing (LC-WGS). The cfDNA TF was then calculated using the ichorCNA bioinformatic algorithm, based on the CNA profile. In parallel, we performed whole exome sequencing of patient tumor tissue and cfDNA samples with detectable TFs. We detected a cfDNA TF in 29% of immune-suppressed patients (one patient with lung cancer and six with systemic NHL), with a TF range from 8 to 70%. In these patients, the events detected in the CNA profile of cfDNA are well-known events associated with NHL and lung cancer. Moreover, cfDNA CNA profile correlated with the CNA profile of matched tumor tissue. No tumor-derived cfDNA was detected in the glioma patients. Our study shows that tumor genetic content is detectable in cfDNA from immunosuppressed patients with advanced NHL or lung cancer. LC-WGS is a time- and cost-effective method that can help select an appropriate strategy for performing extensive molecular analysis of cfDNA. This technique also enables characterization of CNAs in cfDNA when sufficient tumor content is available. Hence, this approach can be used to collect useful molecular information that is relevant to patient care.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA