Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 19(9): e1010910, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37708213

RESUMEN

Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that "double dose" non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than "single dose" heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity.


Asunto(s)
Malaria Falciparum , Malaria , Niño , Humanos , Sistema del Grupo Sanguíneo ABO/genética , Plasmodium falciparum/genética , Estudios de Casos y Controles , Kenia , Genotipo , Malaria Falciparum/genética
2.
Blood Adv ; 4(23): 5942-5950, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33275767

RESUMEN

Few previous studies have reported the effects of glucose-6-phosphate dehydrogenase (G6PD)-deficiency on child health in Africa. We conducted a case-control study in which cases (n = 6829) were children admitted, for any reason, to Kilifi County Hospital, Kenya, while controls (n = 10 179) were recruited from the surrounding community. Cases were subclassified based on their clinical and laboratory findings at admission. We calculated the prevalence of specific diseases by G6PD c.202 genotype, the only significant cause of G6PD-deficiency in this area, then estimated the association between genotype and admission with specific conditions using logistic regression.  Among neonates, the prevalence of jaundice was higher in both G6PD c.202T heterozygotes (40/88; 45.5%; P = .004) and homo/hemizygotes (81/134; 60.5%; P < .0001) than in wild-type homozygotes (157/526; 29.9%). Median bilirubin levels also increased across the groups, being highest (239 mmol/L; interquartile range 96-390 mmol/L) in G6PD c.202T homo/hemizygotes. No differences were seen in admission hemoglobin concentrations or the prevalence of anemia or severe anemia by G6PD c.202 genotype. On case control analysis, G6PD heterozygosity was negatively associated with all-cause hospital admission (odds ratio 0.81; 95% confidence interval 0.73-0.90; P < .0001) and, specifically, admission with either pneumonia or Plasmodium falciparum parasitemia; while, conversely, it was positively associated with Gram-positive bacteremia. G6PD c.202T homo/heterozygosity was positively associated with neonatal jaundice, severe pneumonia, the receipt of a transfusion, and in-patient death. Our study supports the conclusion that G6PD c.202T is a balanced polymorphism in which a selective advantage afforded to heterozygous females against malaria is counterbalanced by increased risks of neonatal jaundice, invasive bacterial infections, and anemia.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa , Estudios de Casos y Controles , Niño , Femenino , Genotipo , Glucosafosfato Deshidrogenasa/genética , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Humanos , Recién Nacido , Kenia/epidemiología
3.
Lancet Glob Health ; 7(10): e1458-e1466, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451441

RESUMEN

BACKGROUND: Sickle cell disease is the most common severe monogenic disorder in humans. In Africa, 50-90% of children born with sickle cell disease die before they reach their fifth birthday. In this study, we aimed to describe the comparative incidence of specific clinical outcomes among children aged between birth and 5 years with and without sickle cell disease, who were resident within the Kilifi area of Kenya. METHODS: This prospective cohort study was done on members of the Kilifi Genetic Birth Cohort Study (KGBCS) on the Indian Ocean coast of Kenya. Recruitment to the study was facilitated through the Kilifi Health and Demographic Surveillance System (KHDSS), which covers a resident population of 260 000 people, and was undertaken between Jan 1, 2006, and April 30, 2011. All children who were born within the KHDSS area and who were aged 3-12 months during the recruitment period were eligible for inclusion. Participants were tested for sickle cell disease and followed up for survival status and disease-specific admission to Kilifi County Hospital by passive surveillance until their fifth birthday. Children with sickle cell disease were offered confirmatory testing and care at a dedicated outpatient clinic. FINDINGS: 15 737 infants were recruited successfully to the KGBCS, and 128 (0·8%) of these infants had sickle cell disease, of whom 70 (54·7%) enrolled at the outpatient clinic within 12 months of recruitment. Mortality was higher in children with sickle cell disease (58 per 1000 person-years of observation, 95% CI 40-86) than in those without sickle cell disease (2·4 per 1000 person-years of observation, 2·0-2·8; adjusted incidence rate ratio [IRR] 23·1, 95% CI 15·1-35·3). Among children with sickle cell disease, mortality was lower in those who enrolled at the clinic (adjusted IRR 0·26, 95% CI 0·11-0·62) and in those with higher levels of haemoglobin F (HbF; adjusted IRR 0·40, 0·17-0·94). The incidence of admission to hospital was also higher in children with sickle cell disease than in children without sickle cell disease (210 per 1000 person-years of observation, 95% CI 174-253, vs 43 per 1000 person-years of observation, 42-45; adjusted IRR 4·80, 95% CI 3·84-6·15). The most common reason for admission to hospital among those with sickle cell disease was severe anaemia (incidence 48 per 1000 person-years of observation, 95% CI 32-71). Admission to hospital was lower in those with a recruitment HbF level above the median (IRR 0·43, 95% CI 0·24-0·78; p=0·005) and those who were homozygous for α-thalassaemia (0·07, 0·01-0·83; p=0·035). INTERPRETATION: Although morbidity and mortality were high in young children with sickle cell disease in this Kenyan cohort, both were reduced by early diagnosis and supportive care. The emphasis must now move towards early detection and prevention of long-term complications of sickle cell disease. FUNDING: Wellcome Trust.


Asunto(s)
Anemia de Células Falciformes/epidemiología , Preescolar , Humanos , Incidencia , Lactante , Recién Nacido , Kenia/epidemiología , Estudios Prospectivos
4.
Nat Commun ; 10(1): 856, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787300

RESUMEN

Most estimates of the burden of malaria are based on its direct impacts; however, its true burden is likely to be greater because of its wider effects on overall health. Here we estimate the indirect impact of malaria on children's health in a case-control study, using the sickle cell trait (HbAS), a condition associated with a high degree of specific malaria resistance, as a proxy indicator for an effective intervention. We estimate the odds ratios for HbAS among cases (all children admitted to Kilifi County Hospital during 2000-2004) versus community controls. As expected, HbAS protects strongly against malaria admissions (aOR 0.26; 95%CI 0.22-0.31), but it also protects against other syndromes, including neonatal conditions (aOR 0.79; 0.67-0.93), bacteraemia (aOR 0.69; 0.54-0.88) and severe malnutrition (aOR 0.67; 0.55-0.83). The wider health impacts of malaria should be considered when estimating the potential added benefits of effective malaria interventions.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Hemoglobina Falciforme/inmunología , Malaria Falciparum/inmunología , Rasgo Drepanocítico/inmunología , Bacteriemia/inmunología , Estudios de Casos y Controles , Preescolar , Genotipo , Hemoglobina Falciforme/genética , Humanos , Lactante , Malaria Falciparum/parasitología , Desnutrición/inmunología , Oportunidad Relativa , Admisión del Paciente/estadística & datos numéricos , Plasmodium falciparum/inmunología , Plasmodium falciparum/fisiología , Rasgo Drepanocítico/genética
5.
Lancet Haematol ; 5(8): e333-e345, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30033078

RESUMEN

BACKGROUND: Human genetic factors are important determinants of malaria risk. We investigated associations between multiple candidate polymorphisms-many related to the structure or function of red blood cells-and risk for severe Plasmodium falciparum malaria and its specific phenotypes, including cerebral malaria, severe malaria anaemia, and respiratory distress. METHODS: We did a case-control study in Kilifi County, Kenya. We recruited as cases children presenting with severe malaria to the high-dependency ward of Kilifi County Hospital. We included as controls infants born in the local community between Aug 1, 2006, and Sept 30, 2010, who were part of a genetics study. We tested for associations between a range of candidate malaria-protective genes and risk for severe malaria and its specific phenotypes. We used a permutation approach to account for multiple comparisons between polymorphisms and severe malaria. We judged p values less than 0·005 significant for the primary analysis of the association between candidate genes and severe malaria. FINDINGS: Between June 11, 1995, and June 12, 2008, 2244 children with severe malaria were recruited to the study, and 3949 infants were included as controls. Overall, 263 (12%) of 2244 children with severe malaria died in hospital, including 196 (16%) of 1233 with cerebral malaria. We investigated 121 polymorphisms in 70 candidate severe malaria-associated genes. We found significant associations between risk for severe malaria overall and polymorphisms in 15 genes or locations, of which most were related to red blood cells: ABO, ATP2B4, ARL14, CD40LG, FREM3, INPP4B, G6PD, HBA (both HBA1 and HBA2), HBB, IL10, LPHN2 (also known as ADGRL2), LOC727982, RPS6KL1, CAND1, and GNAS. Combined, these genetic associations accounted for 5·2% of the variance in risk for developing severe malaria among individuals in the general population. We confirmed established associations between severe malaria and sickle-cell trait (odds ratio [OR] 0·15, 95% CI 0·11-0·20; p=2·61 × 10-58), blood group O (0·74, 0·66-0·82; p=6·26 × 10-8), and -α3·7-thalassaemia (0·83, 0·76-0·90; p=2·06 × 10-6). We also found strong associations between overall risk of severe malaria and polymorphisms in both ATP2B4 (OR 0·76, 95% CI 0·63-0·92; p=0·001) and FREM3 (0·64, 0·53-0·79; p=3·18 × 10-14). The association with FREM3 could be accounted for by linkage disequilibrium with a complex structural mutation within the glycophorin gene region (comprising GYPA, GYPB, and GYPE) that encodes for the rare Dantu blood group antigen. Heterozygosity for Dantu was associated with risk for severe malaria (OR 0·57, 95% CI 0·49-0·68; p=3·22 × 10-11), as was homozygosity (0·26, 0·11-0·62; p=0·002). INTERPRETATION: Both ATP2B4 and the Dantu blood group antigen are associated with the structure and function of red blood cells. ATP2B4 codes for plasma membrane calcium-transporting ATPase 4 (the major calcium pump on red blood cells) and the glycophorins are ligands for parasites to invade red blood cells. Future work should aim at uncovering the mechanisms by which these polymorphisms can result in severe malaria protection and investigate the implications of these associations for wider health. FUNDING: Wellcome Trust, UK Medical Research Council, European Union, and Foundation for the National Institutes of Health as part of the Bill & Melinda Gates Grand Challenges in Global Health Initiative.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Malaria/genética , Polimorfismo Genético , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Frecuencia de los Genes , Humanos , Kenia , Masculino
6.
Am J Hematol ; 93(3): 363-370, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29168218

RESUMEN

Sickle cell anemia (SCA) is the commonest severe monogenic disorders of humans. The disease has been highly characterized in high-income countries but not in sub-Saharan Africa where SCA is most prevalent. We conducted a retrospective cohort study of all children 0-13 years admitted from within a defined study area to Kilifi County Hospital in Kenya over a five-year period. Children were genotyped for SCA retrospectively and incidence rates calculated with reference to population data. Overall, 576 of 18,873 (3.1%) admissions had SCA of whom the majority (399; 69.3%) were previously undiagnosed. The incidence of all-cause hospital admission was 57.2/100 person years of observation (PYO; 95%CI 52.6-62.1) in children with SCA and 3.7/100 PYO (95%CI 3.7-3.8) in those without SCA (IRR 15.3; 95%CI 14.1-16.6). Rates were higher for the majority of syndromic diagnoses at all ages beyond the neonatal period, being especially high for severe anemia (hemoglobin <50 g/L; IRR 58.8; 95%CI 50.3-68.7), stroke (IRR 486; 95%CI 68.4-3,450), bacteremia (IRR 23.4; 95%CI 17.4-31.4), and for bone (IRR 607; 95%CI 284-1,300), and joint (IRR 80.9; 95%CI 18.1-362) infections. The use of an algorithm based on just five clinical features would have identified approximately half of all SCA cases among hospital-admitted children with a number needed to test to identify each affected patient of only fourteen. Our study illustrates the clinical epidemiology of SCA in a malaria-endemic environment without specific interventions. The targeted testing of hospital-admitted children using the Kilifi Algorithm provides a pragmatic approach to early diagnosis in high-prevalence countries where newborn screening is unavailable.


Asunto(s)
Anemia de Células Falciformes/epidemiología , Adolescente , Anemia de Células Falciformes/diagnóstico , Bacteriemia/epidemiología , Niño , Preescolar , Comorbilidad , Diagnóstico Tardío/prevención & control , Diagnóstico Tardío/estadística & datos numéricos , Países en Desarrollo , Pruebas Diagnósticas de Rutina , Susceptibilidad a Enfermedades , Diagnóstico Precoz , Femenino , Humanos , Lactante , Recién Nacido , Kenia/epidemiología , Malaria/epidemiología , Masculino , Desnutrición/epidemiología , Meningitis/epidemiología , Admisión del Paciente , Vigilancia de la Población , Estudios Retrospectivos , Accidente Cerebrovascular/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA