Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(24): e2308955, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38647404

RESUMEN

The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low-cost fabrication process to achieve high-quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si0.25Ge0.75H, Si0.50Ge0.50H, and Si0.75Ge0.25H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect-rich loose-layered structures. Among these compositions, the Si0.50Ge0.50H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g-1 after 60 cycles at a current density of 75 mA g-1. A comprehensive ex-situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si0.50Ge0.50H. Subsequently, an initial assessment of the c-Li15(SixGe1- x)4 phase after lithiation and the a-Si0.50Ge0.50 phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane-silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium.

2.
ACS Mater Lett ; 6(4): 1338-1346, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38576440

RESUMEN

The coupling of energy harvesting and energy storage discrete modules in a single architecture as a "two-in-one" concept is significant in off-grid energy storage devices. This approach can decrease the device size and the loss of energy transmission in common integrated energy harvesting and storage systems. This work systematically investigates the photoactive characteristics of niobium carbide MXene, Nb2CTx, in a photoenhanced hybrid zinc-ion capacitor (P-ZIC). The unique configuration of the Nb2CTx photoactive cathode absorbs light to charge the capacitor and enables it to operate continuously in the light-powered mode. The Nb2CTx-based P-ZIC shows a photodriven capacitance enhancement of over 60% at the scan rate of 10 mV s-1 under 50 mW cm-2 illumination with 435 nm wavelength. Furthermore, a photoenhanced specific capacitance of ∼27 F g-1, an impressive photocharging voltage response of 1.0 V, and capacitance retention of ∼85% (over 3000 cycles) are obtained.

3.
ACS Appl Mater Interfaces ; 16(12): 14722-14741, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38497196

RESUMEN

Energy harvesting and storing by dual-functional photoenhanced (photo-E) energy storage devices are being developed to battle the current energy hassles. In this research work, our investigations on the photoinduced efficiency of germanane (Ge-H) and its functionalized analogue cyanoethyl (Ge-C2-CN) are assessed as photocathodes in photo-E hybrid zinc-ion capacitors (ZICs). The evaluated self-powered photodetector devices made by these germanene-based samples revealed effective performances in photogenerated electrons and holes. The photo-E ZICs findings provided a photoinduced capacitance enhancement of ∼52% (for Ge-H) and ∼26% (for Ge-C2-CN) at a scan rate of 10 mV s-1 under 100 mW cm-2 illumination with 435 nm wavelength. Further characterizations demonstrated that the photo-E ZIC with Ge-C2-CN supply higher specific capacitance (∼6000 mF g-1), energy density (∼550 mWh kg-1), and power density (∼31,000 mW kg-1), compared to the Ge-H. In addition, capacitance retention of photo-E ZIC with Ge-C2-CN is ∼91% after 3000 cycles which is almost 6% greater than Ge-H. Interestingly, the photocharging voltage response in photo-E ZIC made by Ge-C2-CN is 1000 mV, while the photocharging voltage response with Ge-H is approximately 970 mV. The observed performances in Ge-H-based photoactive cathodes highlight the pivotal role of such two-dimensional materials to be applied as single architecture in new unconventional energy storage systems. They are particularly noteworthy when compared to the other advanced photo-E supercapacitors and could even be enhanced greatly with other suitable inorganic and organic functional precursors.

4.
Small ; 20(10): e2305972, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37880906

RESUMEN

Dual-functional photo-rechargeable (photo-R) energy storage devices, which acquire stored energy from solar energy harvesting, are being developed to battle the current energy crisis. In this study, these findings on the photo-driven characteristics of MXene-based photocathodes in photo-R zinc-ion capacitors (ZICs) are presented. Along with the pristine Ti3 C2 Tx MXene, tellurium/Ti3 C2 Tx (Te/Ti3 C2 Tx ) hybrid nanostructure is synthesized via facile chemical vapor transport technique to examine them for photocathodes in ZICs. Interestingly, the evaluated self-powered photodetector devices using MXene-based samples revealed a pyro-phototronic behavior introduced into the samples, with higher desirability observed in Te/Ti3 C2 Tx . The photo-R ZICs results exhibited a capacitance enhancement of 50.86% for Te/Ti3 C2 Tx at two scan rates of 5 and 10 mV s-1 under illumination, compared to dark conditions. In contrast, a capacitance enhancement of 30.20% is obtained for the pristine Ti3 C2 Tx at only a 5 mV s-1 scan rate. Furthermore, both samples achieved photo-charging voltage responses of ≈960 mV, and photoconversion efficiencies of 0.01% (for Te/ Ti3 C2 Tx ) and 0.07% (for Ti3 C2 Tx ). These characteristics in MXene-based single photo-R ZICs are significant and considerable with the distinguished integrated photo-R supercapacitors with solar cells, or coupled energy-harvesting and energy-storing devices reported recently in the literature.

5.
Chemosphere ; 340: 139865, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37598943

RESUMEN

Disposable aluminum cans and plastic bottles are common wastes found in modern societies. This article shows that they can be upcycled into functional materials, such as metal-organic frameworks and hierarchical porous carbon nanomaterials for high-value applications. Through a solvothermal method, used poly(ethylene terephthalate) bottles and aluminum cans are converted into MIL-53(Al). Subsequently, the as-prepared MIL-53(Al) can be further carbonized into a nitrogen-doped (4.52 at%) hierarchical porous carbon framework. With an optical amount of urea present during the carbonization process, the carbon nanomaterial of a high specific surface area of 1324 m2 g-1 with well-defined porosity can be achieved. These features allow the nitrogen-doped hierarchical porous carbon to perform impressively as the working electrode of supercapacitors, delivering a high specific capacitance of 355 F g-1 at 0.5 A g-1 in a three-electrode cell and exhibiting a high energy density of 20.1 Wh kg-1 at a power density of 225 W kg-1, while simultaneously maintaining 88.2% capacitance retention over 10,000 cycles in two-electrode system. This work demonstrates the possibility of upcycling wastes to obtain carbon-based high-performance supercapacitors.


Asunto(s)
Aluminio , Carbono , Porosidad , Nitrógeno , Plásticos
6.
Nanoscale ; 15(30): 12648-12659, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37464871

RESUMEN

The exploitation of two-dimensional (2D) vanadium carbide (V2CTx, denoted as V2C) in electrocatalytic hydrogen evolution reaction (HER) and nitrogen reduction reaction (NRR) is still in the stage of theoretical study with limited experimental exploration. Here, we present the experimental studies of V2C MXene-based materials containing two different bismuth compounds to confirm the possibility of using V2C as a potential electrocatalyst for HER and NRR. In this context, for the first time, we employed two different methods to synthesize 2D/0D and 2D/2D nanostructures. The 2D/2D V2C/BVO consisted of BiVO4 (denoted BVO) nanosheets wrapped in layers of V2C which were synthesized by a facile hydrothermal method, whereas the 2D/0D V2C/Bi consisted of spherical particles of Bi (Bi NPs) anchored on V2C MXenes using the solid-state annealing method. The resultant V2C/BVO catalyst was proven to be beneficial for HER in 0.5 M H2SO4 compared to pristine V2C. We demonstrated that the 2D/2D V2C/BVO structure can favor the higher specific surface area, exposure of more accessible catalytic active sites, and promote electron transfer which can be responsible for optimizing the HER activity. Moreover, V2C/BVO has superior stability in an acidic environment. Whilst we observed that the 2D/0D V2C/Bi could be highly efficient for electrocatalytic NRR purposes. Our results show that the ammonia (NH3) production and faradaic efficiency (FE) of V2C/Bi can reach 88.6 µg h-1 cm-2 and 8% at -0.5 V vs. RHE, respectively. Also V2C/Bi exhibited excellent long-term stability. These achievements present a high performance in terms of the highest generated NH3 compared to recent investigations of MXenes-based electrocatalysts. Such excellent NRR of V2C/Bi activity can be attributed to the effective suppression of HER which is the main competitive reaction of the NRR.

7.
Small Methods ; 7(7): e2300112, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37129581

RESUMEN

The development of new materials for electromagnetic interference (EMI) shielding is an important area of research, as it allows for the creation of more effective and high-efficient shielding solutions. In this sense, MXenes, a class of 2D transition metal carbides and nitrides have exhibited promising performances as EMI shielding materials. Electric conductivity, low density, and flexibility are some of the properties given by MXene materials, which make them very attractive in the field. Different processing techniques have been employed to produce MXene-based materials with EMI shielding properties. This review summarizes processes and the role of key parameters like the content of fillers and thickness in the desired EMI shielding performance. It also discusses the determination of power coefficients in defining the EMI shielding mechanism and the concept of green shielding materials, as well as their influence on the real application of a produced material. The review concludes with a summary of current challenges and prospects in the production of MXene materials as EMI shields.

8.
Nanoscale ; 15(8): 4033-4044, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36728634

RESUMEN

2D carbides and nitrides of transition metals (MXenes) have shown great promise in a variety of energy storage and energy conversion applications. The extraordinary properties of MXenes are because of their excellent conductivity, large carrier concentration, vast specific surface area, superior hydrophilicity, high volumetric capacitance, and rich surface chemistry. However, it is still desired to synthesize MXenes with specific functional groups that deliver the required characteristics. This is due to the fact that a considerable amount of metal atoms is exposed on the surface of MXenes during their synthesis through an etching procedure; hence, other anions and cations are uncontrollably implanted on their surfaces. Because of this situation, the first invented Ti3C2Tx MXene suffers from low photoresponsivity and detectivity, large overpotential, and small sensitivity in photoelectrochemical (PEC) photodetectors, hydrogen evolution reaction (HER), and sensing applications. Therefore, surface modification of the MXene structure is required to develop the device's performance. On the other hand, there is still a lack of understanding of the MXene mechanism in such cutting-edge applications. Thus, the manipulations of MXenes are highly dependent on understanding the device mechanism, suitable modification elements, and modification methods. This study for the first time reveals the conjugation effect of pre-selected S, Se, and Te chalcogen elements on a few-layered Ti3C2Tx MXene to synthesize new composites for PEC photodetector, HER, and vapor sensor applications. Also, the mechanism of the chalcogen decorated few-layered Ti3C2Tx MXene composites for each application is discussed. The selection of a few-layered Ti3C2Tx MXene is due to its fascinating characteristics which make it capable to be considered as an appropriate substrate and incorporating chalcogen atoms. The Te-decorated few-layered Ti3C2Tx MXene composite provides better performances in PEC photodetector and vapor sensing applications. Although the potential value of the Se-decorated few-layered Ti3C2Tx composite is slightly lower than that of the Te-decorated sample in HER application, its overpotential is still greater than that of the Te-decorated sample. The acquired results show that the S-decorated few-layered Ti3C2Tx composite demonstrates the lowest performance in all three examined applications in comparison with the other two samples.

9.
Small ; 19(12): e2206430, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642833

RESUMEN

The attention on group III-VI compounds in the last decades has been centered on the optoelectronic properties of indium and gallium chalcogenides. These outstanding properties are leading to novel advancements in terms of fundamental and applied science. One of the advantages of these compounds is to present laminated structures, which can be exfoliated down to monolayers. Despite the large knowledge gathered toward indium and gallium chalcogenides, the family of the group III-VI compounds embraces several other noncommon compounds formed by the other group III elements. These compounds present various crystal lattices, among which a great deal is offered from layered structures. Studies on aluminium chalcogenides show interesting potential as anodes in batteries and as semiconductors. Thallium (Tl), which is commonly present in the +1 oxidation state, is one of the key components in ternary chalcogenides. However, binary Tl-Q (Q = S, Se, Te) systems and derived films are still studied for their semiconducting and thermoelectric properties. This review aims to summarize the biggest features of these unusual materials and to shed some new light on them with the perspective that in the future, novel studies can revive these compounds in order to give rise to a new generation of technology.

10.
ACS Appl Mater Interfaces ; 15(1): 1859-1870, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36541490

RESUMEN

Photodetectors and sensors have a prominent role in our lives and cover a wide range of applications, including intelligent systems and the detection of harmful and toxic elements. Although there have been several studies in this direction, their practical applications have been hindered by slow response and low responsiveness. To overcome these problems, we have presented here a self-powered (photoelectrochemical, PEC), ultrasensitive, and ultrafast photodetector platform. For this purpose, a novel few-layered palladium-phosphorus-sulfur (PdPS) was fabricated by shear exfoliation for effective photodetection as a practical assessment. The characterization of this self-powered broadband photodetector demonstrated superior responsivity and specific detectivity in the order of 33 mA W-1 and 9.87 × 1010 cm Hz1/2 W-1, respectively. The PEC photodetector also exhibits a broadband photodetection capability ranging from UV to IR spectrum, with the ultrafast response (∼40 ms) and recovery time (∼50 ms). In addition, the novel few-layered PdPS showed superior sensing ability to organic vapors with ultrafast response and a recovery time of less than 1 s. Finally, the photocatalytic activity in the form of hydrogen evolution reaction was explored due to the suitable band alignment and pronounced light absorption capability. The self-powered sensing platforms and superior catalytic activity will pave the way for practical applications in efficient future devices.

11.
Small Methods ; 7(8): e2201329, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36526601

RESUMEN

Two-dimensional nanomaterials, as one of the most widely used substrates for energy storage devices, have achieved great success in terms of the overall capacity. Despite the extensive research effort dedicated to this field, there are still major challenges concerning capacitance modulation and stability of the 2D materials that need to be overcome. Doping of the crystal structures, pillaring methods and 3D structuring of electrodes have been proposed to improve the material properties. However, these strategies are usually accompanied by a significant increase in the cost of the entire material preparation process and also a lack of the versatility for modification of the various types of the chemical structures. Hence in this work, versatile, cheap, and environmentally friendly method for the enhancement of the electrochemical parameter of various MXene-based supercapacitors (Ti3 C2 , Nb2 C, and V2 C), coated with functional and charged organic molecules (zwitterions-ZW) is introduced. The MXene-organic hybrid strategy significantly increases the ionic absorption (capacitance boost) and also forms a passivation layer on the oxidation-prone surface of the MXene through the covalent bonds. Therefore, this work demonstrates a new, cost-effective, and versatile approach (MXene-organic hybrid strategy) for the design and fabrication of hybrid MXene-base electrode materials for energy storage/conversion systems.

12.
Membranes (Basel) ; 12(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36295678

RESUMEN

Mixed-matrix membranes (MMMs) possess the unique properties and inherent characteristics of their component polymer and inorganic fillers, or other possible types of additives. However, the successful fabrication of compact and defect-free MMMs with a homogeneous filler distribution poses a major challenge, due to poor filler/polymer compatibility. In this study, we use two-dimensional multi-layered Ti3C2Tx MXene nanofillers to improve the compatibility and CO2/CH4 separation performance of cellulose triacetate (CTA)-based MMMs. CTA-based MMMs with TiO2-based 1D (nanotubes) and 0D (nanofillers) additives were also fabricated and tested for comparison. The high thermal stability, compact homogeneous structure, and stable long-term CO2/CH4 separation performance of the CTA-2D samples suggest the potential application of the membrane in bio/natural gas separation. The best results were obtained for the CTA-2D sample with a loading of 3 wt.%, which exhibited a 5-fold increase in CO2 permeability and 2-fold increase in CO2/CH4 selectivity, compared with the pristine CTA membrane, approaching the state-of-the-art Robeson 2008 upper bound. The dimensional (shape) effect on separation performance was determined as 2D > 1D > 0D. The use of lamellar stacked MXene with abundant surface-terminating groups not only prevents the aggregation of particles but also enhances the CO2 adsorption properties and provides additional transport channels, resulting in improved CO2 permeability and CO2/CH4 selectivity.

13.
Nanoscale ; 14(14): 5412-5424, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35319556

RESUMEN

Two-dimensional (2D) van der Waals (vdW) materials with tunable heterostructures and superior optoelectronic properties have opened a new platform for various applications, e.g., field-effect transistors, ultrasensitive photodetectors and photocatalysts. In this work, an InSe/InSe(Ge) (germanium doped InSe) vdW heterostructure is designed to improve the photoresponse performance of sole InSe in a photoelectrochemical (PEC)-type photodetector. Photoelectrochemical measurements demonstrated that this heterostructure has excellent photoresponse characteristics, including a photocurrent density of 9.8 µA cm-2, a photo-responsivity of 64 µA W-1, and a response time/recovery time of 0.128 s/0.1 s. Moreover, the measurements also revealed the self-powering capability and long-term cycling stability of this heterostructure. The electronic properties of the prepared pure and Ge-doped single crystals unveiled a negative and temperature-independent thermoelectric power and temperature-activated resistivity. The negative character of dominating charge carriers was confirmed by Hall measurements, which corroborated by electrical resistivity revealed a carrier concentration below ∼1015 cm-3 and an electron mobility of ∼500 cm2 V-1 s-1 in Ge-doped crystals. Additionally, the Mott-Schottky model explored the mechanism of charge transfer and enhanced PEC performance. Band bending at the InSe/InSe(Ge)-electrolyte interface benefits the separation and transformation of photogenerated carriers from the heterostructure to electrolyte due to the tunable energy band alignment. These results indicate that the InSe/InSe(Ge) vdW heterostructure is promising for PEC-type photodetectors, which provide a novel way to utilize 2D vdW heterostructures in optoelectronics.

14.
Sci Total Environ ; 815: 152900, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34998743

RESUMEN

Tin dioxides (SnO2) inserted into carbons to serve as anodes for rechargeable lithium-ion batteries are known to improve their cycling stability. However, studies on diverse-shaped SnO2 nanoparticles within a porous carbon matrix for super stable lithium-ion storage are rare. Herein, a hollow carbon sphere/porous carbon flake (HCS/PCF) framework is fabricated through template carbonization of plastic waste. By changing the doping mechanism and tuning the loading content, nano SnO2 spheres and cubes as well as bulk SnO2 flakes and blocks are in-situ grown within the HCS/PCF. Then, the as-prepared hybrids with built-in various morphological SnO2 nanoparticles serve as anodes towards advanced lithium-ion batteries. Notably, HCS/PCF embedded with nano SnO2 spheres and cubes anodes possess superb long-term cycling stability (~0.048% and ~0.05% average capacitance decay per cycle at 1 A/g over 400 cycles) with high reversible specific capacities of 0.45 and 0.498 Ah/g after 1000 cycles at 5 A/g. The ultra-stabilized Li+ storage is attributed to the effective mitigation of nano SnO2 spheres/cubes volume expansion, originating from the compact SnO2 yolk-HCS/PCF shell construction. This study paves a general strategy for disposing of polymeric waste to produce SnO2 core-carbon shell anodes for super stable lithium-ion storage.

15.
Nanoscale Adv ; 3(15): 4440-4446, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36133472

RESUMEN

Germanium, with a high theoretical capacity based on alloyed lithium and germanium (1384 mA h g-1 Li15Ge4), has stimulated tremendous research as a promising candidate anode material for lithium-ion batteries (LIBs). However, due to the alloying reaction of Li/Ge, the problems of inferior cycle life and massive volume expansion of germanium are equally obvious. Among all Ge-based materials, the unique layered 2D germanane (GeH and GeCH3) with a graphene-like structure, obtained by a chemical etching process from the Zintl phase CaGe2, could enable storage of large quantities of lithium between their interlayers. Besides, the layered structure has the merit of buffering the volume expansion due to the tunable interlayer spacing. In this work, the beyond theoretical capacities of 1637 mA h g-1 for GeH and 2048 mA h g-1 for GeCH3 were achieved in the initial lithiation reaction. Unfortunately, the dreadful capacity fading and electrode fracture happened during the subsequent electrochemical process. A solution, i.e. introducing single-wall carbon nanotubes (SWCNTs) into the structure of the electrodes, was found and further confirmed to improve their electrochemical performance. More noteworthy is the GeH/SWCNT flexible electrode, which exhibits a capacity of 1032.0 mA h g-1 at a high current density of 2000 mA g-1 and a remaining capacity of 653.6 mA h g-1 after 100 cycles at 500 mA g-1. After 100 cycles, the hybrid germanane/SWCNT electrodes maintained good integrity without visible fractures. These results indicate that introducing SWCNTs into germanane effectively improves the electrochemical performance and maintains the integrity of the electrodes for LIBs.

16.
Small ; 16(49): e2004900, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33185035

RESUMEN

2D nanomaterials (2DNMs) possess fascinating properties and are found in multifarious devices and applications including energy storage devices, new generation of battery technologies, sensor devices, and more recently in biomedical applications. Their use in biomedical applications such as tissue engineering, photothermal therapy, neural regeneration, and drug delivery has opened new horizons in treatment of age-old ailments. It is also a rapidly developing area of advanced research. A new approach of integrating 3D printing (3DP), a layer-by-layer deposition technique for building structures, along with 2DNM multifunctional inks, has gained considerable attention in recent times, especially in biomedical applications. With the ever-growing demand in healthcare industry for novel, efficient, and rapid technologies for therapeutic treatment methods, 3DP structures of 2DNMs provide vast scope for evolution of a new generation of biomedical devices. Recent advances in 3DP structures of dispersed 2DNM inks with established high-performance biomedical properties are focused on. The advantages of their 3D structures, the sustainable formulation methods of such inks, and their feasible printing methods are also covered. Subsequently, it deals with the therapeutic applications of some already researched 3DP structures of 2DNMs and concludes with highlighting the challenges as well as the future directions of research in this area.


Asunto(s)
Tinta , Nanoestructuras , Sistemas de Liberación de Medicamentos , Impresión Tridimensional , Ingeniería de Tejidos
17.
Chem Commun (Camb) ; 56(64): 9142-9145, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32657311

RESUMEN

Due to the ever-increasing plastic waste causing serious environmental problems, it is highly desirable to recycle it into high-value-added products, such as carbon nanomaterials. However, the traditional catalytic carbonization of hydrocarbon polymers is severely prohibited by the complexity of real-world plastic waste due to the existence of halogen-containing polymers. In this study, through a universal combined template based on magnesium oxide and iron(iii) acetylacetonate (Fe(acac)3), a three-dimensional hollow carbon sphere/porous carbon flake hybrid nanostructure is prepared from carbonization of plastic waste with high yields (>70 wt%). This approach is not only suitable for hydrocarbon polymers, but also for halogen-containing polymers. Interestingly, the obtained advanced carbon framework exhibits excellent performance in lithium-ion batteries (802 mA h g-1 after 500 cycles at 0.5 A g-1). The present research paves a new avenue to upcycle plastic waste into a high value-added product.

18.
J Nanosci Nanotechnol ; 20(9): 5642-5647, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32331150

RESUMEN

Two Australian native wooden sources (Acacia Mangium and Eucalyptus Globulus) derived pulps were explored as raw feed stocks to prepare the valuable nanomaterial of cellulose nanocrystals (CNC). After bleaching and acid hydrolysis, cellulose nanocrystals were successfully produced with high yields of approximately 60% for both kraft pulps. According to the characterization of SEM and AFM, the as prepared CNC had a rod like structure with the length and diameter in the range of 200~1000 nm and 10~100 nm, respectively based on the initial wooden source. XRD confirmed the crystalline structure of the resulting CNC. Further characterisation by TGA showed that the chemical treatment of the wood pulp had impact upon the thermal stability, evidenced by a lower onset temperature of the thermal decomposition of CNC.

19.
Phys Chem Chem Phys ; 19(19): 11881-11891, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28435943

RESUMEN

A nano-grained layer including line defects was formed on the surface of a Ti alloy (Tialloy, Ti-6Al-4V ELI). Then, the micro- and nano-grained Tialloy with the formation of TiO2 on its top surface was coated with a bioactive Ta layer with or without incorporating an antibacterial agent of Ag that was manufactured by magnetron sputtering. Subsequently, the influence of the charged defects (the defects that can be electrically charged on the surface) on the interfacial bonding strength and hardness of the surface system was studied via an electronic model. Thereby, material systems of (i) Ta coated micro-grained titanium alloy (Ta/MGTialloy), (ii) Ta coated nano-grained titanium alloy (Ta/NGTialloy), (iii) TaAg coated micro-grained titanium alloy (TaAg/MGTialloy) and (iv) TaAg coated nano-grained titanium alloy (TaAg/NGTialloy) were formed. X-ray photoelectron spectroscopy was used to probe the electronic structure of the micro- and nano-grained Tialloy, and so-formed heterostructures. The thin film/substrate interfaces exhibited different satellite peak intensities. The satellite peak intensity may be related to the interfacial bonding strength and hardness of the surface system. The interfacial layer of TaAg/NGTialloy exhibited the highest satellite intensity and maximum hardness value. The increased bonding strength and hardness in the TaAg/NGTialloy arises due to the negative core charge of the dislocations and neighbor space charge accumulation, as well as electron accumulation in the created semiconductor phases of larger band gap at the interfacial layer. These two factors generate interfacial polarization and enhance the satellite intensity. Consequently, the interfacial bonding strength and hardness of the surface system are improved by the formation of mixed covalent-ionic bonding structures around the dislocation core area and the interfacial layer. The bonding strength relationship by in situ XPS on the metal/TiO2 interfacial layer may be examined with other noble metals and applied in diverse fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA