RESUMEN
BACKGROUND: Hyperhomocysteinemia can be due to various abnormalities of the complex interaction of methionine, folate and vitamin B12. It has been known to be a cardiovascular risk factor. This study aims to review the clinical presentation, underlying causes and clinical outcome in paediatric patients diagnosed with significant hyperhomocysteinemia in Malaysia. DESIGN AND METHODS: Data were obtained from the medical records and the laboratory information system. Paediatric patients with significant hyperhomocysteinemia were identified from a selective high-risk screening of 96,721 patients, performed between 2010 and 2022. Inclusion criteria for the study were paediatric patients with significant hyperhomocysteinemia (>40 µmol/L). RESULTS: Sixteen patients were identified. The average total homocysteine (tHcy) and methionine were 269 µmol/L and 499 µmol/L in cystathionine ß-synthase deficiency (CBS), 127 µmol/L and 29 µmol/L in patients with remethylation defects and 390 µmol/L and 4 µmol/L in congenital B12 deficiency. We found c.609G>A as the most prevalent mutation in MMACHC gene and possible novel mutations for CBS (c.402del, c.1333C>T and c.1031T>G) and MTHFR genes (c.266T>A and c.1249del). Further subclassification revealed CBS was 5/16 patients (31 %), remethylation defects was 9/16 (56 %) and congenital B12 deficiency was 2/16 (13 %). All patients received standard treatment and regular monitoring of the main biomarkers. The average age at the time of diagnosis were 9.2 years (CBS) and 1.2 years (remethylation defects). Congenital B12 deficiency had slight delay in milestones, remethylation defects had mild to moderate learning disabilities, CBS had variable degree of intellectual disability, delayed milestones, ophthalmological abnormalities, and thrombosis at an early adolescent/adulthood. CONCLUSIONS: The majority of significant hyperhomocysteinemia in Malaysian children was due to remethylation defects. Screening for hyperhomocysteinemia in Malaysian children is recommended for earlier treatment and improved clinical outcome.
RESUMEN
OBJECTIVE: Carnitine-acylcarnitine Translocase (CACT) deficiency (OMIM 212138) and carnitine palmitoyl transferase 2 (CPT2) deficiency (OMIM 60065050) are rare inherited disorders of mitochondrial long chain fatty acid oxidation. The aim of our study is to review the clinical, biochemical and molecular characteristics in children diagnosed with CACT and CPT2 deficiencies in Malaysia. DESIGN AND METHODS: This is a retrospective study. We reviewed medical records of six patients diagnosed with CACT and CPT2 deficiencies. They were identified from a selective high-risk screening of 50,579 patients from January 2010 until Jun 2020. RESULTS: All six patients had either elevation of the long chain acylcarnitines and/or an elevated (C16 + C18:1)/C2 acylcarnitine ratio. SLC25A20 gene sequencing of patient 1 and 6 showed a homozygous splice site mutation at c.199-10 T > G in intron 2. Two novel mutations at c.109C > T p. (Arg37*) in exon 2 and at c.706C > T p. (Arg236*) in exon 7 of SLC25A20 gene were found in patient 2. Patient 3 and 4 (siblings) exhibited a compound heterozygous mutation at c.638A > G p. (Asp213Gly) and novel mutation c.1073 T > G p. (Leu358Arg) in exon 4 of CPT2 gene. A significant combined prevalence at 0.01% of CACT and CPT2 deficiencies was found in the symptomatic Malaysian patients. CONCLUSIONS: The use of the (C16 + C18:1)/C2 acylcarnitine ratio in dried blood spot in our experience improves the diagnostic specificity for CACT/CPT2 deficiencies over long chain acylcarnitine (C16 and C18:1) alone. DNA sequencing for both genes aids in confirming the diagnosis.
Asunto(s)
Carnitina Aciltransferasas/deficiencia , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/genética , Exones , Intrones , Errores Innatos del Metabolismo Lipídico/genética , Proteínas de Transporte de Membrana/genética , Errores Innatos del Metabolismo/genética , Mutación , Sitios de Empalme de ARN , Carnitina Aciltransferasas/sangre , Carnitina Aciltransferasas/genética , Carnitina O-Palmitoiltransferasa/sangre , Niño , Femenino , Humanos , Errores Innatos del Metabolismo Lipídico/sangre , Malasia , Masculino , Errores Innatos del Metabolismo/sangre , Estudios RetrospectivosRESUMEN
INTRODUCTION: Biotinidase deficiency (BD) is an autosomal recessively inherited disorder characterized by developmental delay, seizures, hypotonia, ataxia, skin rash/eczema, alopecia, conjunctivitis/visual problem/optic atrophy and metabolic acidosis. Delayed diagnosis may lead to irreversible neurological damage. METHODOLOGY: Clinically suspected patients were screened for biotinidase level by a fluorometry method. Profound BD patients were confirmed by mutation analysis of BTD gene. RESULTS: 9 patients had biotinidase activity of less than 77 U. 3 patients (33%) had profound BD while 6 patients (67%) had partial BD. Compound heterozygous mutations were detected at c.98_104delinsTCC p.(Cys33Phefs*36) in Exon 2 and c.833T>C p.(Leu278Pro) in Exon 4 in two patients and a homozygous mutation at c.98_104delinsTCC p.(Cys33Phefs*36) in Exon 2 in another patient. CONCLUSION: Correct diagnosis lead to early treatment and accurate management of patient. Biochemical screening of BD in symptomatic child is prerequisite to determine enzyme status however molecular confirmation is vital in differentiating individuals with profound biotinidase deficiency from partial biotinidase deficiency and also individuals' carriers.
RESUMEN
BACKGROUND: Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive lysosomal storage disease due to N-acetylgalactosamine-6-sulfatase (GALNS) deficiency. It results in accumulation of the glycosaminoglycans, keratan sulfate and chondroitin-6-sulfate, leading to skeletal and other systemic impairments. Data on MPS IVA in Asian populations are scarce. METHODS: This is a multicentre descriptive case series of 21 patients comprising all MPS IVA patients in Malaysia. Mutational analysis was performed by PCR and Sanger sequencing of the GALNS gene in 17 patients. RESULTS: The patients (15 females and 6 males) had a mean age (± SD) of 15.5 (± 8.1) years. Mean age at symptom onset was 2.6 (± 2.1) years and at confirmed diagnosis was 6.9 (± 4.5) years. The study cohort included patients from all the main ethnic groups in Malaysia - 57% Malay, 29% Chinese and 14% Indian. Common presenting symptoms included pectus carinatum (57%) and genu valgum (43%). Eight patients (38%) had undergone surgery, most commonly knee surgeries (29%) and cervical spine decompression (24%). Patients had limited endurance with lower mean walking distances with increasing age. GALNS gene analysis identified 18 distinct mutations comprising 13 missense, three nonsense, one small deletion and one splice site mutation. Of these, eight were novel mutations (Tyr133Ser, Glu158Valfs*12, Gly168*, Gly168Val, Trp184*, Leu271Pro, Glu320Lys, Leu508Pro). Mutations in exons 1, 5 and 9 accounted for 51% of the mutant alleles identified. CONCLUSIONS: All the MPS IVA patients in this study had clinical impairments. A better understanding of the natural history and the clinical and genetic spectrum of MPS IVA in this population may assist early diagnosis, improve management and permit timely genetic counselling and prenatal diagnosis.
Asunto(s)
Mucopolisacaridosis IV/genética , Mucopolisacaridosis IV/patología , Adolescente , Adulto , Niño , Preescolar , Condroitinsulfatasas/genética , Condroitinsulfatasas/metabolismo , Estudios de Cohortes , Femenino , Humanos , Malasia , Masculino , Mucopolisacaridosis IV/metabolismo , Adulto JovenRESUMEN
BACKGROUND: Fructose-1,6-bisphosphatase (FBPase) deficiency is a rare autosomal recessive inborn error of gluconeogenesis. We reported the clinical findings and molecular genetic data in seven Malaysian patients with FBPase deficiency. METHODS: All patients diagnosed with FBPase deficiency from 2010 to 2015 were included in this study. Their clinical and laboratory data were collected retrospectively. RESULTS: All the patients presented with recurrent episodes of hypoglycemia, metabolic acidosis, hyperlactacidemia and hepatomegaly. All of them had the first metabolic decompensation prior to 2 years old. The common triggering factors were vomiting and infection. Biallelic mutations in FBP1 gene (MIM*611570) were identified in all seven patients confirming the diagnosis of FBPase deficiency. In four patients, genetic study was prompted by detection of glycerol or glycerol-3-phosphate in urine organic acids analysis. One patient also had pseudo-hypertriglyceridemia. Seven different mutations were identified in FBP1, among them four mutations were new: three point deletions (c.392delT, c.603delG and c.704delC) and one splice site mutation (c.568-2A > C). All four new mutations were predicted to be damaging by in silico analysis. One patient presented in the neonatal period and succumbed due to sepsis and multi-organ failure. Among six survivors (current age ranged from 4 to 27 years), four have normal growth and cognitive development. One patient had short stature and another had neurological deficit following status epilepticus due to profound hypoglycemia. CONCLUSION: FBPase deficiency needs to be considered in any children with recurrent hypoglycemia and metabolic acidosis. Our study expands the spectrum of FBP1 gene mutations.
Asunto(s)
Acidosis/etiología , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Deficiencia de Fructosa-1,6-Difosfatasa/complicaciones , Hipoglucemia/etiología , Mutación , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Proteínas de Unión al ARN , Recurrencia , Estudios RetrospectivosRESUMEN
Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome.
RESUMEN
Glycine encephalopathy (GCE) or nonketotic hyperglycinemia is an inborn error of glycine metabolism, inherited in an autosomal recessive manner due to a defect in any one of the four enzymes aminomethyltransferase (AMT), glycine decarboxylase (GLDC), glycine cleavage system protein-H (GCSH) and dehydrolipoamide dehydrogenase in the glycine cleavage system. This defect leads to glycine accumulation in body tissues, including the brain, and causes various neurological symptoms such as encephalopathy, hypotonia, apnea, intractable seizures and possible death. We screened 14 patients from 13 families with clinical and biochemical features suggestive of GCE for mutation in AMT, GLDC and GCSH genes by direct sequencing and genomic rearrangement of GLDC gene using a multiplex ligation-dependant probe amplification. We identified mutations in all 14 patients. Seven patients (50%) have biallelic mutations in GLDC gene, six patients (43%) have biallelic mutations in AMT gene and one patient (7%) has mutation identified in only one allele in GLDC gene. Majority of the mutations in GLDC and AMT were missense mutations and family specific. Interestingly, two mutations p.Arg265His in AMT gene and p.His651Arg in GLDC gene occurred in the Penan sub-population. No mutation was found in GCSH gene. We concluded that mutations in both GLDC and AMT genes are the main cause of GCE in Malaysian population.
Asunto(s)
Aminometiltransferasa/genética , Predisposición Genética a la Enfermedad/genética , Proteína H del Complejo de la Glicina Descarboxilasa/genética , Glicina-Deshidrogenasa (Descarboxilante)/genética , Hiperglicinemia no Cetósica/genética , Mutación , Secuencia de Bases , Análisis Mutacional de ADN/métodos , Salud de la Familia , Femenino , Genotipo , Humanos , Recién Nacido , MasculinoRESUMEN
UNLABELLED: Lysinuric protein intolerance (LPI; MIM 222700) is an inherited aminoaciduria with an autosomal recessive mode of inheritance. Biochemically, affected patients present with increased excretion of the cationic amino acids: lysine, arginine, and ornithine. We report the first case of LPI diagnosed in Malaysia presented with excessive excretion of homocitrulline. The patient was a 4-year-old male who presented with delayed milestones, recurrent diarrhea, and severe failure to thrive. He developed hyperammonemic coma following a forced protein-rich diet. Plasma amino acid analysis showed increased glutamine, alanine, and citrulline but decreased lysine, arginine and ornithine. Urine amino acids showed a marked excretion of lysine and ornithine together with a large peak of unknown metabolite which was subsequently identified as homocitrulline by tandem mass spectrometry. Molecular analysis confirmed a previously unreported homozygous mutation at exon 1 (235 G > A, p.Gly79Arg) in the SLC7A7 gene. This report demonstrates a novel mutation in the SLC7A7 gene in this rare inborn error of diamino acid metabolism. It also highlights the importance of early and efficient treatment of infections and dehydration in these patients. CONCLUSION: The diagnosis of LPI is usually not suspected by clinical findings alone, and specific laboratory investigations and molecular analysis are important to get a definitive diagnosis.