Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 36(4)2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39419073

RESUMEN

Transition metal oxides have demonstrated excellent capability for charge storage when used in supercapacitor electrodes. This study undertook the hydrothermal synthesis of bimetallic nickel and manganese oxide (NiO/MnO2) on a carbon-felt (CF) substrate. NiO/MnO2/CF electrode was characterized and examined in a three-electrode system in a potassium hydroxide electrolyte. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge analyses revealed Faradaic behavior during charge storage, a specific capacity of 1627 F g-1, and a stability of 96.8% after 5000 consecutive charge-discharge cycles. Subsequent investigations were conducted in a two-electrode system for constructing a symmetrical supercapacitor using the NiO/MnO2/CF electrode. The energy and power densities were determined as 43Wh kg-1and 559 W kg-1. Additionally, the stability of the constructed supercapacitor device was examined over 5000 consecutive cycles, verifying a 92% stability through charge-discharge cycles. Finally, the fabricated supercapacitor was utilized to power an LED lamp, successfully maintaining the illumination for 53 s.

2.
J Phys Condens Matter ; 36(49)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39191277

RESUMEN

The ethanol oxidation process in fuel cells is most efficient when conducted by platinum based catalysts. Our research team endeavored to find affordable and efficient catalysts, synthesizing catalysts based on metal oxides of nickel and molybdenum in the form of NiO/MoO2and NiO/MoO2hybridized with activated carbon obtained from the wheat husk (ACWH) through a hydrothermal method. After precise physical characterization, the capability of these catalysts in the ethanol oxidation process was measured through electrochemical analyses in an alkaline environment. The presence of ACWH in the catalyst structure significantly improves the active surface and electrocatalytic activity. NiO/MoO2/ACWH with a current density of 16 mA cm-2at a peak potential of 0.55 V and 93% cyclic stability after 5000 alternate CV cycles, can be an appealing, relatively efficient, and stable option in ethanol oxidation.

3.
Molecules ; 28(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37375168

RESUMEN

Today, finding low-cost electro-catalysts for methanol and ethanol oxidation with high performance and stability is one of the new research topics. A nanocatalyst based on metal oxides in the form of MnMoO4 was synthesized by a hydrothermal method for methanol (MOR) and ethanol (EOR) oxidation reactions. Adding reduced graphene oxide (rGO) to the catalyst structure improved the electrocatalytic activity of MnMoO4 for the oxidation processes. The crystal structure and morphology of the MnMoO4 and MnMoO4-rGO nanocatalysts were investigated by physical analyses such as scanning electron microscopy and X-ray diffraction. Their abilities for MOR and EOR processes in an alkaline medium were evaluated by performing electrochemical tests such as cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. MnMoO4-rGO showed oxidation current densities of 60.59 and 25.39 mA/cm2 and peak potentials of 0.62 and 0.67 V in MOR and EOR processes (at a scan rate of 40 mV/s), respectively. Moreover, stabilities of 91.7% in MOR and 88.6% in EOR processes were obtained from the chronoamperometry analysis within 6 h. All these features make MnMoO4-rGO a promising electrochemical catalyst for the oxidation of alcohols.

4.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36432357

RESUMEN

The demands for alternative energy have led researchers to find effective electrocatalysts in fuel cells and increase the efficiency of existing materials. This study presents new nanocatalysts based on two binary transition metal oxides (BTMOs) and their hybrid with reduced graphene oxide for methanol oxidation. Characterization of the introduced three-component composite, including cobalt manganese oxide (MnCo2O4), nickel cobalt oxide (NiCo2O4), and reduced graphene oxide (rGO) in the form of MnCo2O4/NiCo2O4/rGO (MNR), was investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray (EDX) analyses. The alcohol oxidation capability of MnCo2O4/NiCo2O4 (MN) and MNR was evaluated in the methanol oxidation reaction (MOR) process. The crucial role of rGO in improving the electrocatalytic properties of catalysts stems from its large active surface area and high electrical conductivity. The alcohol oxidation tests of MN and MNR showed an adequate ability to oxidize methanol. The better performance of MNR was due to the synergistic effect of MnCo2O4/NiCo2O4 and rGO. MN and MNR nanocatalysts, with a maximum current density of 14.58 and 24.76 mA/cm2 and overvoltage of 0.6 and 0.58 V, as well as cyclic stability of 98.3% and 99.7% (at optimal methanol concentration/scan rate of 20 mV/S), respectively, can be promising and inexpensive options in the field of efficient nanocatalysts for use in methanol fuel cell anodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA