Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
ERJ Open Res ; 9(6)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38076674

RESUMEN

Plasma levels of α1-antitrypsin-derived C-terminal peptides might be valid as novel biomarkers to predict and/or characterise exacerbations in PiMM and PiZZ COPD patients, or to reflect the efficiency of augmentation therapy in PiZZ patients https://bit.ly/3rNJeLd.

2.
Cell Chem Biol ; 30(12): 1508-1524.e7, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37647900

RESUMEN

Cannabinoids are phytochemicals from cannabis with anti-inflammatory actions in immune cells. Lipid mediators (LM), produced from polyunsaturated fatty acids (PUFA), are potent regulators of the immune response and impact all stages of inflammation. How cannabinoids influence LM biosynthetic networks is unknown. Here, we reveal cannabidiol (CBD) as a potent LM class-switching agent that stimulates the production of specialized pro-resolving mediators (SPMs) but suppresses pro-inflammatory eicosanoid biosynthesis. Detailed metabololipidomics analysis in human monocyte-derived macrophages showed that CBD (i) upregulates exotoxin-stimulated generation of SPMs, (ii) suppresses 5-lipoxygenase (LOX)-mediated leukotriene production, and (iii) strongly induces SPM and 12/15-LOX product formation in resting cells by stimulation of phospholipase A2-dependent PUFA release and through Ca2+-independent, allosteric 15-LOX-1 activation. Finally, in zymosan-induced murine peritonitis, CBD increased SPM and 12/15-LOX products and suppressed pro-inflammatory eicosanoid levels in vivo. Switching eicosanoid to SPM production is a plausible mode of action of CBD and a promising inflammation-resolving strategy.


Asunto(s)
Cannabidiol , Humanos , Animales , Ratones , Cannabidiol/farmacología , Inflamación/tratamiento farmacológico , Eicosanoides , Macrófagos , Ácidos Grasos Insaturados/farmacología , Inmunidad Innata
3.
Proc Natl Acad Sci U S A ; 120(35): e2302070120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603745

RESUMEN

Glucocorticoids (GC) are potent anti-inflammatory agents, broadly used to treat acute and chronic inflammatory diseases, e.g., critically ill COVID-19 patients or patients with chronic inflammatory bowel diseases. GC not only limit inflammation but also promote its resolution although the underlying mechanisms are obscure. Here, we reveal reciprocal regulation of 15-lipoxygenase (LOX) isoform expression in human monocyte/macrophage lineages by GC with respective consequences for the biosynthesis of specialized proresolving mediators (SPM) and their 15-LOX-derived monohydroxylated precursors (mono-15-OH). Dexamethasone robustly up-regulated pre-mRNA, mRNA, and protein levels of ALOX15B/15-LOX-2 in blood monocyte-derived macrophage (MDM) phenotypes, causing elevated SPM and mono-15-OH production in inflammatory cell types. In sharp contrast, dexamethasone blocked ALOX15/15-LOX-1 expression and impaired SPM formation in proresolving M2-MDM. These dexamethasone actions were mimicked by prednisolone and hydrocortisone but not by progesterone, and they were counteracted by the GC receptor (GR) antagonist RU486. Chromatin immunoprecipitation (ChIP) assays revealed robust GR recruitment to a putative enhancer region within intron 3 of the ALOX15B gene but not to the transcription start site. Knockdown of 15-LOX-2 in M1-MDM abolished GC-induced SPM formation and mono-15-OH production. Finally, ALOX15B/15-LOX-2 upregulation was evident in human monocytes from patients with GC-treated COVID-19 or patients with IBD. Our findings may explain the proresolving GC actions and offer opportunities for optimizing GC pharmacotherapy and proresolving mediator production.


Asunto(s)
COVID-19 , Glucocorticoides , Humanos , Glucocorticoides/farmacología , Araquidonato 15-Lipooxigenasa/genética , Inflamación , Dexametasona/farmacología , Lípidos
4.
Adv Sci (Weinh) ; 10(6): e2205604, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36567268

RESUMEN

Specialized pro-resolving mediators (SPM), primarily produced in innate immune cells, exert crucial bioactions for resolving inflammation. Among various lipoxygenases (LOX), 15-LOX-1 is key for SPM biosynthesis, but cellular activation principles of 15-LOX-1 are unexplored. It was shown that 3-O-acetyl-11-keto-ß-boswellic acid (AKBA) shifts 5-LOX regiospecificity from 5- to 12-lipoxygenation products. Here, it is demonstrated that AKBA additionally activates cellular 15-LOX-1 via an allosteric site accomplishing robust SPM formation in innate immune cells, particularly in M2 macrophages. Compared to ionophore, AKBA-induced LOX activation is Ca2+ - and phosphorylation-independent, with modest induction of 5-LOX products. AKBA docks into a groove between the catalytic and regulatory domains of 15-LOX-1 interacting with R98; replacement of R98 by alanine abolishes AKBA-induced 15-LOX product formation in HEK293 cells. In zymosan-induced murine peritonitis, AKBA strikingly elevates SPM levels and promotes inflammation resolution. Together, targeted allosteric modulation of LOX activities governs SPM formation and offers new concepts for inflammation resolution pharmacotherapy.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Lipooxigenasa , Humanos , Ratones , Animales , Regulación Alostérica , Células HEK293 , Inflamación/tratamiento farmacológico , Lípidos , Receptores Depuradores de Clase E
5.
Front Pharmacol ; 14: 1332628, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239198

RESUMEN

Introduction: Frankincense preparations are frequently used as traditional anti-inflammatory remedies in folk medicine with increasing popularity. Boswellic acids (BAs), especially 3-O-acetyl-11-keto-ßBA (AKBA), are unique anti-inflammatory principles of frankincense, with multiple pharmacological actions and target proteins. We recently showed that AKBA favorably impacts lipid mediator (LM) networks in innate immune cells, by modulation of lipoxygenase (LOX) activities. Thus, AKBA binds to allosteric sites in 5-LOX, shifting the regiospecificity to a 12/15-lipoxygnating enzyme, and to an analogous site in 15-LOX-1, leading to enzyme activation, which favors specialized pro-resolving mediator (SPM) formation at the expense of leukotriene production. Methods: Here, we investigated Boswellin super® (BSR), a commercially available frankincense extract with ≥30% AKBA, used as remedy that approved efficacy in osteoarthritis trials, for its ability to modulate LM pathways in human monocyte-derived macrophage (MDM) phenotypes, neutrophils, and neutrophil/platelet co-incubations. LM profiling was performed by using targeted ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS). Results: BSR concentration-dependently (10-100 µg/ml) suppressed formation of pro-inflammatory 5-LOX products including LTB4 in exotoxin-stimulated M1-MDM and neutrophils, and strongly elevated 12/15-LOX products and SPM in activated M2-MDM and neutrophil/platelet cocultures, starting at 10 µg/mL. Also, BSR (≥10 µg/mL) induced robust 12/15-LOX product and SPM generation in resting M2-MDM, which was further markedly elevated when exogenous docosahexaenoic acid (DHA) and eicosahexaenoic acid (EPA) were supplied, and induced translocation of 15-LOX from a soluble to a particulate locale in M2 MDM. Discussion: We conclude that BSR especially when co-added with DHA and EPA, promotes the LM class switch in innate immune cells from pro-inflammatory to pro-resolving mediators, which might be a plausible mechanism underlying the anti-inflammatory actions of BSR.

6.
Nutrients ; 14(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35684065

RESUMEN

Specialized pro-resolving mediators (SPM) have emerged as crucial lipid mediators that confer the inflammation-resolving effects of omega-3 polyunsaturated fatty acids (n-3 PUFA). Importantly, SPM biosynthesis is dysfunctional in various conditions, which may explain the inconclusive efficacy data from n-3 PUFA interventions. To overcome the limitations of conventional n-3 PUFA supplementation strategies, we devised a composition enabling the self-sufficient production of SPM in vivo. Bacillus megaterium strains were fed highly bioavailable n-3 PUFA, followed by metabololipidomics analysis and bioinformatic assessment of the microbial genomes. All 48 tested Bacillus megaterium strains fed with the n-3 PUFA formulation produced a broad range of SPM and precursors thereof in a strain-specific manner, which may be explained by the CYP102A1 gene polymorphisms that we detected. A pilot study was performed to test if a synbiotic Bacillus megaterium/n-3 PUFA formulation increases SPM levels in vivo. Supplementation with a synbiotic capsule product led to significantly increased plasma levels of hydroxy-eicosapentaenoic acids (5-HEPE, 15-HEPE, 18-HEPE) and hydroxy-docosahexaenoic acids (4-HDHA, 7-HDHA) as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in healthy humans. To the best of our knowledge, we report here for the first time the development and in vivo application of a self-sufficient SPM-producing formulation. Further investigations are warranted to confirm and expand these findings, which may create a new class of n-3 PUFA interventions targeting inflammation resolution.


Asunto(s)
Bacillus megaterium , Ácidos Grasos Omega-3 , Simbióticos , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Insaturados , Humanos , Inflamación , Proyectos Piloto , Cloruro de Sodio Dietético
7.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34358086

RESUMEN

Extracts of frankincense, the gum resin of Boswellia species, have been extensively used in traditional folk medicine since ancient times and are still of great interest as promising anti-inflammatory remedies in Western countries. Despite their common therapeutic use and the intensive pharmacological research including studies on active ingredients, modes of action, bioavailability, pharmacokinetics, and clinical efficacy, frankincense preparations are available as nutraceuticals but have not yet approved as a drug on the market. A major issue of commercially available frankincense nutraceuticals is the striking differences in their composition and quality, especially related to the content of boswellic acids (BAs) as active ingredients, mainly due to the use of material from divergent Boswellia species but also because of different work-up and extraction procedures. Here, we assessed three frequently used frankincense-based preparations for their BA content and the interference with prominent pro-inflammatory actions and targets that have been proposed, that is, 5-lipoxygenase and leukotriene formation in human neutrophils, microsomal prostaglandin E2 synthase-1, and inflammatory cytokine secretion in human blood monocytes. Our data reveal striking differences in the pharmacological efficiencies of these preparations in inflammation-related bioassays which obviously correlate with the amounts of BAs they contain. In summary, high-quality frankincense extracts display powerful anti-inflammatory effectiveness against multiple targets which can be traced back to BAs as bioactive ingredients.

8.
Nanomaterials (Basel) ; 11(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34443772

RESUMEN

Inflammation is a hallmark of tissue remodeling during wound healing. The inflammatory response to wounds is tightly controlled and well-coordinated; dysregulation compromises wound healing and causes persistent inflammation. Topical application of natural anti-inflammatory products may improve wound healing, in particular under chronic pathological conditions. The long-chain metabolites of vitamin E (LCM) are bioactive molecules that mediate cellular effects via oxidative stress signaling as well as anti-inflammatory pathways. However, the effect of LCM on wound healing has not been investigated. We administered the α-tocopherol-derived LCMs α-13'-hydroxychromanol (α-13'-OH) and α-13'-carboxychromanol (α-13'-COOH) as well as the natural product garcinoic acid, a δ-tocotrienol derivative, in different pharmaceutical formulations directly to wounds using a splinted wound mouse model to investigate their effects on the wounds' proinflammatory microenvironment and wound healing. Garcinoic acid and, in particular, α-13'-COOH accelerated wound healing and quality of the newly formed tissue. We next loaded bacterial nanocellulose (BNC), a valuable nanomaterial used as a wound dressing with high potential for drug delivery, with α-13'-COOH. The controlled release of α-13'-COOH using BNC promoted wound healing and wound closure, mainly when a diabetic condition was induced before the injury. This study highlights the potential of α-13'-COOH combined with BNC as a potential active wound dressing for the advanced therapy of skin injuries.

9.
Pharmacol Res ; 167: 105556, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33812006

RESUMEN

The pentacyclic triterpenoid quinone methide celastrol (CS) from Tripterygium wilfordii Hook. F. effectively ameliorates inflammation with potential as therapeutics for inflammatory diseases. However, the molecular mechanisms underlying the anti-inflammatory and inflammation-resolving features of CS are incompletely understood. Here we demonstrate that CS potently inhibits the activity of human 5-lipoxygenase (5-LOX), the key enzyme in pro-inflammatory leukotriene (LT) formation, in cell-free assays with IC50 = 0.19-0.49 µM. Employing metabololipidomics using ultra-performance liquid chromatography coupled to tandem mass spectrometry in activated human polymorphonuclear leukocytes or M1 macrophages we found that CS (1 µM) potently suppresses 5-LOX-derived products without impairing the formation of lipid mediators (LM) formed by 12-/15-LOXs as well as fatty acid substrate release. Intriguingly, CS induced the generation of 12-/15-LOX-derived LM including the specialized pro-resolving mediator (SPM) resolvin D5 in human M2 macrophages. Finally, intraperitoneal pre-treatment of mice with 10 mg/kg CS strongly impaired zymosan-induced LT formation and simultaneously elevated the levels of SPM and related 12-/15-LOX-derived LM in peritoneal exudates, spleen and plasma in vivo. Conclusively, CS promotes a switch from LT biosynthesis to formation of SPM which may underlie the anti-inflammatory and inflammation-resolving effects of CS, representing an interesting pharmacological strategy for intervention with inflammatory disorders.


Asunto(s)
Antiinflamatorios/farmacología , Leucotrienos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Inhibidores de la Lipooxigenasa/farmacología , Triterpenos Pentacíclicos/farmacología , Animales , Antiinflamatorios/química , Araquidonato 5-Lipooxigenasa/metabolismo , Vías Biosintéticas/efectos de los fármacos , Células Cultivadas , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inhibidores de la Lipooxigenasa/química , Masculino , Ratones , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos/química , Tripterygium/química
10.
Nanomaterials (Basel) ; 10(12)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327519

RESUMEN

Natural products suited for prophylaxis and therapy of inflammatory diseases have gained increasing importance. These compounds could be beneficially integrated into bacterial cellulose (BC), which is a natural hydropolymer applicable as a wound dressing and drug delivery system alike. This study presents experimental outcomes for a natural anti-inflammatory product concept of boswellic acids from frankincense formulated in BC. Using esterification respectively (resp.) oxidation and subsequent coupling with phenylalanine and tryptophan, post-modification of BC was tested to facilitate lipophilic active pharmaceutical ingredient (API) incorporation. Diclofenac sodium and indomethacin were used as anti-inflammatory model drugs before the findings were transferred to boswellic acids. By acetylation of BC fibers, the loading efficiency for the more lipophilic API indomethacin and the release was increased by up to 65.6% and 25%, respectively, while no significant differences in loading could be found for the API diclofenac sodium. Post-modifications could be made while preserving biocompatibility, essential wound dressing properties and anti-inflammatory efficacy. Eventually, in vitro wound closure experiments and evaluations of the effect of secondary dressings completed the study.

11.
Cell Rep ; 33(2): 108247, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053344

RESUMEN

Underlying mechanisms of how infectious inflammation is resolved by the host are incompletely understood. One hallmark of inflammation resolution is the activation of specialized pro-resolving mediators (SPMs) that enhance bacterial clearance and promote tissue repair. Here, we reveal α-hemolysin (Hla) from Staphylococcus aureus as a potent elicitor of SPM biosynthesis in human M2-like macrophages and in the mouse peritoneum through selective activation of host 15-lipoxygenase-1 (15-LOX-1). S. aureus-induced SPM formation in M2 is abolished upon Hla depletion or 15-LOX-1 knockdown. Isolated Hla elicits SPM formation in M2 that is reverted by inhibition of the Hla receptor ADAM10. Lipid mediators derived from Hla-treated M2 accelerate planarian tissue regeneration. Hla but not zymosan provokes substantial SPM formation in the mouse peritoneum, devoid of leukocyte infiltration and pro-inflammatory cytokine secretion. Besides harming the host, Hla may also exert beneficial functions by stimulating SPM production to promote the resolution of infectious inflammation.


Asunto(s)
Toxinas Bacterianas/farmacología , Proteínas Hemolisinas/farmacología , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Proteína ADAM10/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Endotoxinas/metabolismo , Activación Enzimática/efectos de los fármacos , Eliminación de Gen , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Peritoneo/efectos de los fármacos , Peritoneo/metabolismo , Planarias/efectos de los fármacos , Planarias/fisiología , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Regeneración/efectos de los fármacos
12.
Nat Chem Biol ; 16(7): 783-790, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32393899

RESUMEN

Leukotrienes (LT) are lipid mediators of the inflammatory response that are linked to asthma and atherosclerosis. LT biosynthesis is initiated by 5-lipoxygenase (5-LOX) with the assistance of the substrate-binding 5-LOX-activating protein at the nuclear membrane. Here, we contrast the structural and functional consequences of the binding of two natural product inhibitors of 5-LOX. The redox-type inhibitor nordihydroguaiaretic acid (NDGA) is lodged in the 5-LOX active site, now fully exposed by disordering of the helix that caps it in the apo-enzyme. In contrast, the allosteric inhibitor 3-acetyl-11-keto-beta-boswellic acid (AKBA) from frankincense wedges between the membrane-binding and catalytic domains of 5-LOX, some 30 Å from the catalytic iron. While enzyme inhibition by NDGA is robust, AKBA promotes a shift in the regiospecificity, evident in human embryonic kidney 293 cells and in primary immune cells expressing 5-LOX. Our results suggest a new approach to isoform-specific 5-LOX inhibitor development through exploitation of an allosteric site in 5-LOX.


Asunto(s)
Araquidonato 5-Lipooxigenasa/química , Productos Biológicos/química , Inhibidores de la Lipooxigenasa/química , Masoprocol/química , Triterpenos/química , Sitio Alostérico , Araquidonato 5-Lipooxigenasa/genética , Araquidonato 5-Lipooxigenasa/metabolismo , Productos Biológicos/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/química , Ácidos Hidroxieicosatetraenoicos/metabolismo , Leucotrieno B4/química , Leucotrieno B4/metabolismo , Inhibidores de la Lipooxigenasa/metabolismo , Masoprocol/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Triterpenos/metabolismo
13.
J Immunol ; 203(4): 1031-1043, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31300512

RESUMEN

Alternative (M2)-polarized macrophages possess high capacities to produce specialized proresolving mediators (SPM; i.e., resolvins, protectins, and maresins) that play key roles in resolution of inflammation and tissue regeneration. Vacuolar (H+)-ATPase (V-ATPase) is fundamental in inflammatory cytokine trafficking and secretion and was implicated in macrophage polarization toward the M2 phenotype, but its role in SPM production and lipid mediator biosynthesis in general is elusive. In this study, we show that V-ATPase activity is required for the induction of SPM-biosynthetic pathways in human M2-like monocyte-derived macrophages (MDM) and consequently for resolution of inflammation. Blockade of V-ATPase by archazolid during IL-4-induced human M2 polarization abrogated 15-lipoxygenase-1 expression and prevented the related biosynthesis of SPM in response to pathogenic Escherichia coli, assessed by targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics. In classically activated proinflammatory M1-like MDM, however, the biosynthetic machinery for lipid mediator formation was independent of V-ATPase activity. Targeting V-ATPase in M2 influenced neither IL-4-triggered JAK/STAT6 nor the mTOR complex 1 signaling but strongly suppressed the ERK-1/2 pathway. Accordingly, the ERK-1/2 pathway contributes to 15-lipoxygenase-1 expression and SPM formation in M2-like MDM. Targeting V-ATPase in vivo delayed resolution of zymosan-induced murine peritonitis accompanied by decreased SPM levels without affecting proinflammatory leukotrienes or PGs. Together, our data propose that V-ATPase regulates 15-lipoxygenase-1 expression and consequent SPM biosynthesis involving ERK-1/2 during M2 polarization, implying a crucial role for V-ATPase in the resolution of inflammation.


Asunto(s)
Mediadores de Inflamación/inmunología , Activación de Macrófagos/inmunología , Macrófagos/inmunología , ATPasas de Translocación de Protón Vacuolares/inmunología , Animales , Femenino , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Transducción de Señal/inmunología , ATPasas de Translocación de Protón Vacuolares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA