Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Antibiot (Tokyo) ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890386

RESUMEN

Spectinomycin is an aminocyclitol antibiotic with a unique ribosomal binding site. Prior synthetic modifications of spectinomycin have enhanced potency and antibacterial spectrum through addition at the 6'-position to produce trospectomycin and to the 3'-position to produce spectinamides and aminomethyl spectinomycins. This study focused on the design, synthesis, and evaluation of three 3',6'-disubstituted spectinomycin analogs: trospectinamide, N-benzyl linked aminomethyl, and N-ethylene linked aminomethyl trospectomycins. Computational experiments predicted that these disubstituted analogs would be capable of binding within the SPC ribosomal binding site. The new analogs were synthesized from trospectomycin, adapting the previously established routes for the spectinamide and aminomethyl spectinomycin series. In a cell-free translation assay, the disubstituted analogs showed ribosomal inhibition similar to spectinomycin or trospectomycin. These disubstituted analogs demonstrated inhibitory MIC activity against various bacterial species with the 3'-modification dictating spectrum of activity, leading to improved activity against mycobacterium species. Notably, N-ethylene linked aminomethyl trospectomycins exhibited increased potency against Mycobacterium abscessus and trospectinamide displayed robust activity against M. tuberculosis, aligning with the selective efficacy of spectinamides. The study also found that trospectomycin is susceptible to efflux in M. tuberculosis and M. abscessus. These findings contribute to the understanding of the structure-activity relationship of spectinomycin analogs and can guide the design and synthesis of more effective spectinomycin compounds.

2.
Proc Natl Acad Sci U S A ; 121(2): e2314101120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165935

RESUMEN

Mycobacterium abscessus (Mab), a nontuberculous mycobacterial (NTM) species, is an emerging pathogen with high intrinsic drug resistance. Current standard-of-care therapy results in poor outcomes, demonstrating the urgent need to develop effective antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), we have identified a distinct structural subclass of N-ethylene linked aminomethyl SPCs (eAmSPCs) that are up to 64-fold more potent against Mab over the parent SPC. Mechanism of action and crystallography studies demonstrate that the eAmSPCs display a mode of ribosomal inhibition consistent with SPC. However, they exert their increased antimicrobial activity through enhanced accumulation, largely by circumventing efflux mechanisms. The N-ethylene linkage within this series plays a critical role in avoiding TetV-mediated efflux, as lead eAmSPC 2593 displays a mere fourfold susceptibility improvement against Mab ΔtetV, in contrast to the 64-fold increase for SPC. Even a minor shortening of the linkage by a single carbon, akin to 1st generation AmSPC 1950, results in a substantial increase in MICs and a 16-fold rise in susceptibility against Mab ΔtetV. These shifts suggest that longer linkages might modify the kinetics of drug expulsion by TetV, ultimately shifting the equilibrium towards heightened intracellular concentrations and enhanced antimicrobial efficacy. Furthermore, lead eAmSPCs were also shown to synergize with various classes of anti-Mab antibiotics and retain activity against clinical isolates and other mycobacterial strains. Encouraging pharmacokinetic profiles coupled with robust efficacy in Mab murine infection models suggest that eAmSPCs hold the potential to be developed into treatments for Mab and other NTM infections.


Asunto(s)
Antiinfecciosos , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Humanos , Animales , Ratones , Espectinomicina/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antibacterianos/farmacología , Micobacterias no Tuberculosas , Antiinfecciosos/farmacología , Etilenos/farmacología , Pruebas de Sensibilidad Microbiana
3.
Cell Mol Life Sci ; 80(12): 378, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38010524

RESUMEN

A common perception in age-related neurodegenerative diseases posits that a decline in proteostasis is key to the accumulation of neuropathogenic proteins, such as amyloid beta (Aß), and the development of sporadic Alzheimer's disease (AD). To experimentally challenge the role of protein homeostasis in the accumulation of Alzheimer's associated protein Aß and levels of associated Tau phosphorylation, we disturbed proteostasis in single APP knock-in mouse models of AD building upon Rps9 D95N, a recently identified mammalian ram mutation which confers heightened levels of error-prone translation together with an increased propensity for random protein aggregation and which is associated with accelerated aging. We crossed the Rps9 D95N mutation into knock-in mice expressing humanized Aß with different combinations of pathogenic mutations (wild-type, NL, NL-F, NL-G-F) causing a stepwise and quantifiable allele-dependent increase in the development of Aß accumulation, levels of phosphorylated Tau, and neuropathology. Surprisingly, the misfolding-prone environment of the Rps9 D95N ram mutation did not affect Aß accumulation and plaque formation, nor the level of phosphorylated Tau in any of the humanized APP knock-in lines. Our findings indicate that a misfolding-prone environment induced by error-prone translation with its inherent perturbations in protein homeostasis has little impact on the accumulation of pathogenic Aß, plaque formation and associated phosphorylated Tau.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Masculino , Ratones , Animales , Ovinos , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteostasis , Ratones Transgénicos , Placa Amiloide/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Mamíferos/metabolismo
4.
ACS Infect Dis ; 9(8): 1622-1633, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37481733

RESUMEN

Complementing our earlier syntheses of the gentamicins B1, C1a, C2b, and X2, we describe the synthesis of gentamicins C1, C2, and C2a characterized by methyl substitution at the 6'-position, and so present an alternative access to previous chromatographic methods for accessing these sought-after compounds. We describe the antiribosomal activity of our full set of synthetic gentamicin congeners against bacterial ribosomes and hybrid ribosomes carrying the decoding A site of the human mitochondrial, A1555G mutant mitochondrial, and cytoplasmic ribosomes and establish structure-activity relationships with the substitution pattern around ring I to antiribosomal activity, antibacterial resistance due to the presence of aminoglycoside acetyl transferases acting on the 6'-position in ring I, and literature cochlear toxicity data.


Asunto(s)
Antibacterianos , Gentamicinas , Humanos , Gentamicinas/farmacología , Gentamicinas/análisis , Antibacterianos/farmacología , Antibacterianos/química , Aminoglicósidos
5.
ChemMedChem ; 18(1): e202200486, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36198651

RESUMEN

An intramolecular hydrogen bond between the protonated equatorial 7'-methylamino group of apramycin and the vicinal axial 6'-hydroxy group acidifies the 6'-hydroxy group leading to a strong hydrogen bond to A1408 in the ribosomal drug binding pocket in the decoding A site of the small ribosomal subunit. In 6'-epiapramycin, the trans-nature of the 6'-hydroxy group and the 7'-methylamino group results in a much weaker intramolecular hydrogen bond, and a consequently weaker cooperative hydrogen bonding network with A1408, resulting overall in reduced inhibition of protein synthesis and antibacterial activity.


Asunto(s)
Antibacterianos , Nebramicina , Enlace de Hidrógeno , Antibacterianos/química , Nebramicina/química , Ribosomas/metabolismo , Aminoglicósidos
6.
Cell Rep ; 40(13): 111433, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36170830

RESUMEN

Age-related neurodegenerative diseases (NDDs) are associated with the aggregation and propagation of specific pathogenic protein species (e.g., Aß, α-synuclein). However, whether disruption of synaptic homeostasis results from protein misfolding per se rather than accumulation of a specific rogue protein is an unexplored question. Here, we show that error-prone translation, with its frequent outcome of random protein misfolding, is sufficient to recapitulate many early features of NDDs, including perturbed Ca2+ signaling, neuronal hyperexcitability, and mitochondrial dysfunction. Mice expressing the ribosomal ambiguity mutation Rps9 D95N exhibited disrupted synaptic homeostasis resulting in behavioral changes reminiscent of early Alzheimer disease (AD), such as learning and memory deficits, maladaptive emotional responses, epileptiform discharges, suppressed circadian rhythmicity, and sleep fragmentation, accompanied by hippocampal NPY expression and cerebral glucose hypometabolism. Collectively, our findings suggest that random protein misfolding may contribute to the pathogenesis of age-related NDDs, providing an alternative framework for understanding the initiation of AD.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Glucosa , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos , alfa-Sinucleína/metabolismo
7.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457201

RESUMEN

We have recently identified point mutation V336Y in mitoribosomal protein Mrps5 (uS5m) as a mitoribosomal ram (ribosomal ambiguity) mutation conferring error-prone mitochondrial protein synthesis. In vivo in transgenic knock-in animals, homologous mutation V338Y was associated with a discrete phenotype including impaired mitochondrial function, anxiety-related behavioral alterations, enhanced susceptibility to noise-induced hearing damage, and accelerated metabolic aging in muscle. To challenge the postulated link between Mrps5 V338Y-mediated misreading and the in vivo phenotype, we introduced mutation G315R into the mouse Mrps5 gene as Mrps5 G315R is homologous to the established bacterial ram mutation RpsE (uS5) G104R. However, in contrast to bacterial translation, the homologous G → R mutation in mitoribosomal Mrps5 did not affect the accuracy of mitochondrial protein synthesis. Importantly, in the absence of mitochondrial misreading, homozygous mutant MrpS5G315R/G315R mice did not show a phenotype distinct from wild-type animals.


Asunto(s)
Proteínas Mitocondriales , Proteínas Ribosómicas , Animales , Ratones , Proteínas Mitocondriales/genética , Mutación , Fenotipo , Filogenia , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética
8.
ChemMedChem ; 17(13): e202200120, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385605

RESUMEN

Modification at the 5''-position of 4,5-disubstituted aminoglycoside antibiotics (AGAs) to circumvent inactivation by aminoglycoside modifying enzymes (AMEs) is well known. Such modifications, however, unpredictably impact activity and affect target selectivity thereby hindering drug development. A survey of 5''-modifications of the 4,5-AGAs and the related 5-O-furanosyl apramycin derivatives is presented. In the neomycin and the apralog series, all modifications were well-tolerated, but other 4,5-AGAs require a hydrogen bonding group at the 5''-position for maintenance of antibacterial activity. The 5''-amino modification resulted in parent-like activity, but reduced selectivity against the human cytosolic decoding A site rendering this modification unfavorable in paromomycin, propylamycin, and ribostamycin. Installation of a 5''-formamido group and, to a lesser degree, a 5''-ureido group resulted in parent-like activity without loss of selectivity. These lessons will aid the design of next-generation AGAs capable of circumventing AME action while maintaining high antibacterial activity and target selectivity.


Asunto(s)
Aminoglicósidos , Ribosomas , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Humanos , Neomicina/farmacología , Inhibidores de la Síntesis de la Proteína , Relación Estructura-Actividad
9.
Sci Adv ; 8(9): eabl9051, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35235349

RESUMEN

The main source of error in gene expression is messenger RNA decoding by the ribosome. Translational accuracy has been suggested on a purely correlative basis to positively coincide with maximum possible life span among different rodent species, but causal evidence that translation errors accelerate aging in vivo and limit life span is lacking. We have now addressed this question experimentally by creating heterozygous knock-in mice that express the ribosomal ambiguity mutation RPS9 D95N, resulting in genome-wide error-prone translation. Here, we show that Rps9 D95N knock-in mice exhibit reduced life span and a premature onset of numerous aging-related phenotypes, such as reduced weight, chest deformation, hunchback posture, poor fur condition, and urinary syndrome, together with lymphopenia, increased levels of reactive oxygen species-inflicted damage, accelerated age-related changes in DNA methylation, and telomere attrition. Our results provide an experimental link between translational accuracy, life span, and aging-related phenotypes in mammals.


Asunto(s)
Envejecimiento Prematuro , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento Prematuro/genética , Animales , Longevidad , Mamíferos/genética , Ratones , Especies Reactivas de Oxígeno , Telómero
10.
Lancet Infect Dis ; 22(7): e178-e190, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35090639

RESUMEN

The 2020 clinical practice guideline for the treatment of non-tuberculous mycobacterial pulmonary disease (NTM-PD) by the American Thoracic Society, European Respiratory Society, European Society of Clinical Microbiology and Infectious Diseases, and Infectious Diseases Society of America; and the 2017 management guideline by the British Thoracic Society covered pulmonary diseases in adults caused by Mycobacterium avium complex, Mycobacterium kansasii, Mycobacterium xenopi, and Mycobacterium abscessus. In order to provide evidence-based recommendations for the treatment of less common non-tuberculous mycobacterial (NTM) species in adult patients without cystic fibrosis or HIV infection, our expert panel group performed systematic literature searches to provide management guidance for pulmonary diseases caused by seven additional organisms: Mycobacterium chelonae, Mycobacterium fortuitum, Mycobacterium genavense, Mycobacterium gordonae, Mycobacterium malmoense, Mycobacterium simiae, and Mycobacterium szulgai. Treatment recommendations were developed by a structured consensus process. The evidence from the scientific literature published in English for treatment recommendations for pulmonary diseases caused by other NTM species was of very low quality, with the exception of M malmoense, and based on the evaluation of case reports and case series. For M malmoense, results from two randomised controlled trials and three retrospective cohort studies provided a better evidence base for treatment recommendations, although the evidence was still of low quality.


Asunto(s)
Infecciones por VIH , Enfermedades Pulmonares , Infecciones por Mycobacterium no Tuberculosas , Adulto , Consenso , Humanos , Enfermedades Pulmonares/terapia , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas , Estudios Retrospectivos
11.
Antimicrob Agents Chemother ; 66(2): e0151021, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34930031

RESUMEN

Antibiotic therapy of infections caused by the emerging pathogen Mycobacterium abscessus is challenging due to the organism's inherent resistance to clinically available antimicrobials. The low bactericidal potency of currently available treatment regimens is of concern and testifies to the poor therapeutic outcomes for pulmonary M. abscessus infections. Mechanistically, we demonstrate here that the acetyltransferase Eis2 is responsible for the lack of bactericidal activity of amikacin, the standard aminoglycoside used in combination treatment. In contrast, the aminoglycoside apramycin, with a distinct structure, is not modified by any of the pathogen's innate aminoglycoside resistance mechanisms and is not affected by the multidrug resistance regulator WhiB7. As a consequence, apramycin uniquely shows potent bactericidal activity against M. abscessus. This favorable feature of apramycin is reflected in a mouse model of pulmonary M. abscessus infection, which demonstrates superior activity, compared with amikacin. These findings encourage the development of apramycin for the treatment of M. abscessus infections and suggest that M. abscessus eradication in pulmonary disease may be within therapeutic reach.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Nebramicina , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Nebramicina/análogos & derivados , Nebramicina/farmacología , Nebramicina/uso terapéutico
12.
Commun Biol ; 4(1): 1350, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857875

RESUMEN

Proteostasis is a challenge for cellular organisms, as all known protein synthesis machineries are error-prone. Here we show by cell fractionation and microscopy studies that misfolded proteins formed in the endoplasmic reticulum can become associated with and partly transported into mitochondria, resulting in impaired mitochondrial function. Blocking the endoplasmic reticulum-mitochondria encounter structure (ERMES), but not the mitochondrial sorting and assembly machinery (SAM) or the mitochondrial surveillance pathway components Msp1 and Vms1, abrogated mitochondrial sequestration of ER-misfolded proteins. We term this mitochondria-associated proteostatic mechanism for ER-misfolded proteins ERAMS (ER-associated mitochondrial sequestration). We testify to the relevance of this pathway by using mutant α-1-antitrypsin as an example of a human disease-related misfolded ER protein, and we hypothesize that ERAMS plays a role in pathological features such as mitochondrial dysfunction.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Portadoras/genética , Retículo Endoplásmico/fisiología , Mitocondrias/fisiología , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Células HEK293 , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
EBioMedicine ; 73: 103652, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34740109

RESUMEN

BACKGROUND: The clinical-stage drug candidate EBL-1003 (apramycin) represents a distinct new subclass of aminoglycoside antibiotics for the treatment of drug-resistant infections. It has demonstrated best-in-class coverage of resistant isolates, and preclinical efficacy in lung infection models. However, preclinical evidence for its utility in other disease indications has yet to be provided. Here we studied the therapeutic potential of EBL-1003 in the treatment of complicated urinary tract infection and acute pyelonephritis (cUTI/AP). METHODS: A combination of data-base mining, antimicrobial susceptibility testing, time-kill experiments, and four murine infection models was used in a comprehensive assessment of the microbiological coverage and efficacy of EBL-1003 against Gram-negative uropathogens. The pharmacokinetics and renal toxicology of EBL-1003 in rats was studied to assess the therapeutic window of EBL-1003 in the treatment of cUTI/AP. FINDINGS: EBL-1003 demonstrated broad-spectrum activity and rapid multi-log CFU reduction against a phenotypic variety of bacterial uropathogens including aminoglycoside-resistant clinical isolates. The basicity of amines in the apramycin molecule suggested a higher increase in positive charge at urinary pH when compared to gentamicin or amikacin, resulting in sustained drug uptake and bactericidal activity, and consequently in potent efficacy in mouse infection models. Renal pharmacokinetics, biomarkers for toxicity, and kidney histopathology in adult rats all indicated a significantly lower nephrotoxicity of EBL-1003 than of gentamicin. INTERPRETATION: This study provides preclinical proof-of-concept for the efficacy of EBL-1003 in cUTI/AP. Similar efficacy but lower nephrotoxicity of EBL-1003 in comparison to gentamicin may thus translate into a higher safety margin and a wider therapeutic window in the treatment of cUTI/API. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Asunto(s)
Antibacterianos/uso terapéutico , Concentración de Iones de Hidrógeno , Nebramicina/análogos & derivados , Pielonefritis/tratamiento farmacológico , Infecciones Urinarias/tratamiento farmacológico , Animales , Antibacterianos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Nebramicina/farmacología , Nebramicina/uso terapéutico , Pielonefritis/etiología , Ratas , Resultado del Tratamiento , Infecciones Urinarias/etiología
14.
Cells ; 10(11)2021 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-34831079

RESUMEN

Translational errors frequently arise during protein synthesis, producing misfolded and dysfunctional proteins. Chronic stress resulting from translation errors may be particularly relevant in tissues that must synthesize and secrete large amounts of secretory proteins. Here, we studied the proteostasis networks in the liver of mice that express the Rps2-A226Y ribosomal ambiguity (ram) mutation to increase the translation error rate across all proteins. We found that Rps2-A226Y mice lack activation of the eIF2 kinase/ATF4 pathway, the main component of the integrated stress response (ISR), as well as the IRE1 and ATF6 pathways of the ER unfolded protein response (ER-UPR). Instead, we found downregulation of chronic ER stress responses, as indicated by reduced gene expression for lipogenic pathways and acute phase proteins, possibly via upregulation of Sirtuin-1. In parallel, we observed activation of alternative proteostasis responses, including the proteasome and the formation of stress granules. Together, our results point to a concerted response to error-prone translation to alleviate ER stress in favor of activating alternative proteostasis mechanisms, most likely to avoid cell damage and apoptotic pathways, which would result from persistent activation of the ER and integrated stress responses.


Asunto(s)
Estrés del Retículo Endoplásmico , Silenciador del Gen , Hígado/metabolismo , Hígado/patología , Biosíntesis de Proteínas , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Estrés del Retículo Endoplásmico/genética , Ratones Transgénicos , Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas/genética , Proteostasis , Sirtuina 1/metabolismo , Gránulos de Estrés/metabolismo , Respuesta de Proteína Desplegada/genética , Regulación hacia Arriba/genética
15.
RSC Med Chem ; 12(9): 1585-1591, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34671740

RESUMEN

In order to further investigate the importance of the conformation of the ring I side chain in aminoglycoside antibiotic binding to the ribosomal target several derivatives of paromomycin were designed with conformationally locked side chains. By changing the size of the appended ring between O-4' and C-6' used to restrict the motion of the side chain, the position of the C-6' hydroxy group was fine tuned to probe for the optimal conformation for inhibition of the ribosome. While the changes in orientation of the 6'-hydroxy group cannot be completely dissociated from the size and hydrophobicity of the conformation-restricting ring, overall, it is apparent that the preferred conformation of the ring I side chain for interaction with A1408 in the decoding A site of the bacterial ribosome is an ideal gt conformation, which results in the highest antimicrobial activity as well as increased selectivity for bacterial over eukaryotic ribosomes.

16.
Commun Biol ; 4(1): 703, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103648

RESUMEN

Random errors in protein synthesis are prevalent and ubiquitous, yet their effect on organismal health has remained enigmatic for over five decades. Here, we studied whether mice carrying the ribosomal ambiguity (ram) mutation Rps2-A226Y, recently shown to increase the inborn error rate of mammalian translation, if at all viable, present any specific, possibly aging-related, phenotype. We introduced Rps2-A226Y using a Cre/loxP strategy. Resulting transgenic mice were mosaic and showed a muscle-related phenotype with reduced grip strength. Analysis of gene expression in skeletal muscle using RNA-Seq revealed transcriptomic changes occurring in an age-dependent manner, involving an interplay of PGC1α, FOXO3, mTOR, and glucocorticoids as key signaling pathways, and finally resulting in activation of a muscle atrophy program. Our results highlight the relevance of translation accuracy, and show how disturbances thereof may contribute to age-related pathologies.


Asunto(s)
Atrofia Muscular/genética , Biosíntesis de Proteínas , Envejecimiento , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Atrofia Muscular/fisiopatología , Mutación , Ribosomas/genética , Transcriptoma
17.
ACS Infect Dis ; 7(8): 2413-2424, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34114793

RESUMEN

Propylamycin (4'-deoxy-4'-propylparomomycin) is a next generation aminoglycoside antibiotic that displays increased antibacterial potency over the parent, coupled with reduced susceptibility to resistance determinants and reduced ototoxicity in the guinea pig model. Propylamycin nevertheless is inactivated by APH(3')-Ia, a specific aminoglycoside phosphotransferase isozyme that acts on the primary hydroxy group of the ribofuranosyl moiety (at the 5''-position). To overcome this problem, we have prepared and studied the antibacterial and antiribosomal activity of various propylamycin derivatives carrying amino or substituted amino groups at the 5''-position in place of the vulnerable hydroxy group. We find that the introduction of an additional basic amino group at this position, while overcoming the action of the aminoglycoside phosphoryltransferase isozymes acting at the 5''-position as anticipated, results in a significant drop in selectivity for the bacterial over the eukaryotic ribosomes that is predictive of increased ototoxicity. In contrast, 5''-deoxy-5''-formamidopropylamycin retains the excellent across-the-board levels of antibacterial activity of propylamycin itself, while circumventing the action of the offending aminoglycoside phosphotransferase isozymes and affording even greater selectivity for the bacterial over the eukaryotic ribosomes. Other modifications to address the susceptibility of propylamycin to the APH(3')-Ia isozyme including deoxygenation at the 3'-position and incorporation of a 6',5''-bis(hydroxyethylamino) modification offer no particular advantage.


Asunto(s)
Aminoglicósidos , Antibacterianos , Animales , Antibacterianos/toxicidad , Cobayas , Pruebas de Sensibilidad Microbiana , Ribosomas
18.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803109

RESUMEN

Mitochondrial misreading, conferred by mutation V338Y in mitoribosomal protein Mrps5, in-vivo is associated with a subtle neurological phenotype. Brain mitochondria of homozygous knock-in mutant Mrps5V338Y/V338Y mice show decreased oxygen consumption and reduced ATP levels. Using a combination of unbiased RNA-Seq with untargeted metabolomics, we here demonstrate a concerted response, which alleviates the impaired functionality of OXPHOS complexes in Mrps5 mutant mice. This concerted response mitigates the age-associated decline in mitochondrial gene expression and compensates for impaired respiration by transcriptional upregulation of OXPHOS components together with anaplerotic replenishment of the TCA cycle (pyruvate, 2-ketoglutarate).


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Mutación Missense , Biosíntesis de Proteínas , Proteínas Ribosómicas/biosíntesis , Adenosina Trifosfato/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Animales , Encéfalo/patología , Ciclo del Ácido Cítrico/genética , Técnicas de Sustitución del Gen , Ratones , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Ribosómicas/genética
19.
Microb Genom ; 7(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33555243

RESUMEN

Human tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC). The MTBC comprises several human-adapted lineages known as M. tuberculosis sensu stricto, as well as two lineages (L5 and L6) traditionally referred to as Mycobacterium africanum. Strains of L5 and L6 are largely limited to West Africa for reasons unknown, and little is known of their genomic diversity, phylogeography and evolution. Here, we analysed the genomes of 350 L5 and 320 L6 strains, isolated from patients from 21 African countries, plus 5 related genomes that had not been classified into any of the known MTBC lineages. Our population genomic and phylogeographical analyses showed that the unclassified genomes belonged to a new group that we propose to name MTBC lineage 9 (L9). While the most likely ancestral distribution of L9 was predicted to be East Africa, the most likely ancestral distribution for both L5 and L6 was the Eastern part of West Africa. Moreover, we found important differences between L5 and L6 strains with respect to their phylogeographical substructure and genetic diversity. Finally, we could not confirm the previous association of drug-resistance markers with lineage and sublineages. Instead, our results indicate that the association of drug resistance with lineage is most likely driven by sample bias or geography. In conclusion, our study sheds new light onto the genomic diversity and evolutionary history of M. africanum, and highlights the need to consider the particularities of each MTBC lineage for understanding the ecology and epidemiology of TB in Africa and globally.


Asunto(s)
Farmacorresistencia Bacteriana , Mycobacterium tuberculosis/clasificación , Tuberculosis/microbiología , Secuenciación Completa del Genoma/métodos , África Oriental , África Occidental , Evolución Molecular , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Filogenia , Filogeografía
20.
J Antibiot (Tokyo) ; 74(6): 381-396, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33504919

RESUMEN

Spectinomycin, an aminocyclitol antibiotic, is subject to inactivation by aminoglycoside modifying enzymes (AMEs) through adenylylation or phosphorylation of the 6-hydroxy group position. In this study, the effects of deoxygenation of the 2- and 6-hydroxy group positions on the spectinomycin actinamine ring are probed to evaluate their relationship to ribosomal binding and the antimicrobial activities of spectinomycin, semisynthetic aminomethyl spectinomycins (amSPCs), and spectinamides. To generate these analogs, an improved synthesis of 6-deoxyspectinomycin was developed using the Barton deoxygenation reaction. 6-Dehydrospectinamide was also synthesized from spectinamide 4 to evaluate the H-bond acceptor character on the C-6 position. All the synthesized analogs were tested for antibacterial activity against a panel of Gram (+) and Gram (-) pathogens, plus Mycobacterium tuberculosis. The molecular contribution of the 2- and 6-hydroxy group and the aryl functionalities of all analogs were examined by measuring inhibition of ribosomal translation and molecular dynamics experiments with MM/GBSA analysis. The results of this work indicate that the 6-hydroxy group, which is the primary target of AMEs, is a required motif for antimicrobial activity in current analogs. Removal of the 6-hydroxy group could be partially rescued by offsetting ribosomal binding contributions made by the aryl side chains found in the spectinamide and amSPCs. This study builds on the knowledge of the structure-activity relationships of spectinomycin analogs and is being used to aid the design of next-generation spectinomycins.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Ribosomas/efectos de los fármacos , Espectinomicina/química , Antibacterianos/síntesis química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/efectos de los fármacos , Espectinomicina/análogos & derivados , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA