Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 30(5): 7976-7986, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299549

RESUMEN

We propose an all-dielectric single-layer guided-mode resonance filter (GMRF) operating in the high-frequency terahertz (THz) region. For the fabrication of thin gratings to achieve strong resonance in the high-frequency region, the refractive index and absorption must be small, while the tensile strength must be high. Cyclic olefin copolymer (COC) films have a lower refractive index and absorption than polyethylene terephthalate (PET) films and a higher tensile yield strength than polytetrafluoroethylene (PTFE) films. Therefore, the COC film was found suitable to fabricate a GMRF operating in the high-frequency THz region. We fabricated COC-based single-layer GMRFs with a thickness of 50 µm and grating periods of 500, 400, 300, 200, and 100 µm; the resonance frequencies of the TE0,1 mode were 0.576, 0.712, 0.939, 1.329, and 2.759 THz, respectively. A shorter grating period caused a greater shift of the resonance to a higher frequency. In particular, the COC film enabled the fabrication of a 100-µm grating period with a ridge width of 32 µm and length of 2 mm, enabling the GMRF to operate up to 2.759 THz, which is very high frequency compared to the previous highest frequency of 0.7 THz. These results were in good agreement with a simulation using rigorous coupled-wave analysis.

2.
Opt Express ; 29(23): 37917-37926, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808855

RESUMEN

All-dielectric binary gratings, with and without slab waveguides, are designed to generate polarization-independent guided-mode resonance filters (GMRFs) operating in the THz frequency region using the rigorous coupled-wave analysis (RCWA) method. The filling factor and thickness of the grating were adjusted to have equal resonance frequencies of transverse electric (TE)- and transverse magnetic (TM)-polarized THz beams. The single polarization-independent resonance for a binary grating without a slab waveguide was obtained at 0.459 THz with full width at half maximum (FWHM) values of 8.3 and 8.5 GHz for the TE and TM modes, respectively. Moreover, double-layered polarization-independent resonances for binary gratings with slab waveguides were obtained at 0.369 and 0.442 THz with very high Q-factors of up to 284. This is the first study to propose a polarization-independent GMRF with two resonant frequencies.

3.
Nat Commun ; 12(1): 6851, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824264

RESUMEN

The deflection of charged particles is an intuitive way to visualize an electromagnetic oscillation of coherent light. Here, we present a real-time ultrafast oscilloscope for time-frozen visualization of a terahertz (THz) optical wave by probing light-driven motion of relativistic electrons. We found the unique condition of subwavelength metal slit waveguide for preserving the distortion-free optical waveform during its propagation. Momentary stamping of the wave, transversely travelling inside a metal slit, on an ultrashort wide electron bunch enables the single-shot recording of an ultrafast optical waveform. As a proof-of-concept experiment, we successfully demonstrated to capture the entire field oscillation of a THz pulse with a sampling rate of 75.7 TS/s. Owing to the use of transversely-wide and longitudinally-short electron bunch and transversely travelling wave, the proposed "single-shot oscilloscope" will open up new avenue for developing the real-time petahertz (PHz) metrology.

4.
Nanomaterials (Basel) ; 10(10)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992586

RESUMEN

We herein present an alternative geometry of nanostructured carbon cathode capable of obtaining a low turn-on field, and both stable and high current densities. This cathode geometry consisted of a micro-hollow array on planar carbon nanostructures engineered by femtosecond laser. The micro-hollow geometry provides a larger edge area for achieving a lower turn-on field of 0.70 V/µm, a sustainable current of approximately 2 mA (about 112 mA/cm2) at an applied field of less than 2 V/µm. The electric field in the vicinity of the hollow array (rim edge) is enhanced due to the edge effect, that is key to improving field emission performance. The edge effect of the micro-hollow cathode is confirmed by numerical calculation. This new type of nanostructured carbon cathode geometry can be promisingly applied for high intensity and compact electron sources.

5.
Struct Dyn ; 7(3): 034301, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32566696

RESUMEN

The experimental observation of femtosecond dynamics in atoms and molecules by stroboscopic technologies utilizing x ray or electron flashes has attracted much attention and has rapidly developed. We propose a feasible ultrafast electron diffraction (UED) technology with high brightness and a sub-10 fs temporal resolution. We previously demonstrated a UED system with an overall temporal resolution of 31 fs by using an RF photoelectron gun and a 90° achromatic bending structure. This UED structure enabled a bunch duration of 25 fs and a low timing jitter of less than 10 fs while maintaining a high bunch charge of 0.6 pC. In this paper, we demonstrate a simple way to further compress the electron bunch duration to sub-10 fs based on installing an energy filter in the dispersion section of the achromatic bend. The energy filter removes the electrons belonging to nonlinear parts of the phase space. Through numerical simulations, we demonstrate that the electron bunches can be compressed, at the sample position, to a 6.2 fs (rms) duration for a 100 fC charge. This result suggests that the energy filtering approach is more viable and effective than complicated beam-shaping techniques that commonly handle the nonlinear distribution of the electron beam. Furthermore, a gas-filled hollow core fiber compressor and a Ti:sapphire amplifier are used to implement pump laser pulses of less than 5 fs (rms). Thus, we could present the full simulation results of a sub-10 fs UED, and we believe that it will be one of the technical prototypes to challenge the sub-fs time resolution.

6.
Rev Sci Instrum ; 88(11): 113306, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29195384

RESUMEN

We describe a compact THz-pump and X-ray-probe beamline, based on an electron linac, for ultrafast time-resolved diffraction applications. Two high-energy electron (γ > 50) bunches, 5 ns apart, impinge upon a single-foil or multifoil radiator and generate THz radiation and X-rays simultaneously. The THz pulse from the first bunch is synchronized to the X-ray beam of the second bunch by using an adjustable optical delay of a THz pulse. The peak power of THz radiation from the multifoil radiator is estimated to be 0.14 GW for a 200 pC well-optimized electron bunch. GEANT4 simulations show that a carbon foil with a thickness of 0.5-1.0 mm has the highest yield of 10-20 keV hard X-rays for a 25 MeV beam, which is approximately 103 photons/(keV pC-electrons) within a few degrees of the polar angle. A carbon multifoil radiator with 35 foils (25 µm thick each) can generate close to 103 hard X-rays/(keV pC-electrons) within a 2° acceptance angle. With 200 pC charge and a 100 Hz repetition rate, we can generate 107 X-rays per 1 keV energy bin per second or 105 X-rays per 1 keV energy bin per pulse. The longitudinal time profile of an X-ray pulse ranges from 400 to 600 fs depending on the acceptance angle. The broadening of the time duration of an X-ray pulse is observed owing to its diverging effect. A double-crystal monochromator will be used to select and transport the desired X-rays to the sample. The heating of the radiators by an electron beam is negligible because of the low beam current.

7.
Sci Rep ; 7: 42833, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28216677

RESUMEN

Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.

8.
Sci Rep ; 7: 39966, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067288

RESUMEN

Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today's ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources.

9.
Opt Express ; 24(10): 11054-61, 2016 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-27409928

RESUMEN

We report on efficient generation of ultra-broadband terahertz (THz) waves via optical rectification in a novel nonlinear organic crystal with acentric core structure, i.e. 2-(4-hydroxystyryl)-1-methylquinolinium 4-methylbenzenesulfonate (OHQ-T), which possesses an ideal molecular structure leading to a maximized nonlinear optical response for near-infrared-pumped THz wave generation. By systematic studies on wavelength-dependent phase-matching conditions in OHQ-T crystals of different thicknesses we are able to generate coherent THz waves with a high peak-to-peak electric field amplitude of up to 650 kV/cm and an upper cut-off frequency beyond 10 THz. High optical-to-THz conversion efficiency of 0.31% is achieved by efficient index matching with a selective pumping at 1300 nm.

10.
Sci Rep ; 3: 3200, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24220234

RESUMEN

The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation.

11.
Opt Lett ; 36(20): 4089-91, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22002395

RESUMEN

High-quality monolayer graphene as large as 1.2×1.2 cm2 was synthesized by chemical vapor deposition and used as a transmitting saturable absorber for efficient passive mode-locking of a femtosecond bulk solid-state laser. The monolayer graphene mode-locked Cr:forsterite laser was tunable around 1.25 µm and delivered sub-100 fs pulses with output powers up to 230 mW. The nonlinear optical characteristics of the monolayer graphene saturable absorber and the mode-locked operation were then compared with the case of the bilayer graphene saturable absorber.

12.
Opt Express ; 19(8): 7833-8, 2011 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-21503094

RESUMEN

We report on passive mode-locking of a Ti:sapphire laser employing a single-walled carbon nanotube saturable absorber (SWCNT-SA) specially designed and fabricated for wavelengths near 800 nm. Mode-locked pulses as short as 62 fs were generated at a repetition rate of 99.4 MHz. We achieved output powers from the SWCNT-SA mode-locked laser as high as 600 mW with a slope efficiency of 26%. The characteristics of SWCNT-SA-assisted mode-locking were compared with those of Kerr-lens mode-locking without SWCNT-SA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA