Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 298(4): F1051-8, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20130117

RESUMEN

It is now well established that the antidiuretic response to vasopressin is modulated by changes in aquaporin-2 (AQP2) expression in response to hydration status. While vasopressin itself is one signal driving expression, other signals also play a part. In this study, we planned to investigate whether prostaglandins, known to modulate AQP2 trafficking, may play a role in this process. Male Wistar rats were kept in metabolic cages, with either free access to water and food, or were given 15 g of food gelled with water, such that they were fluid restricted or fluid loaded. The effects of oral administration of two structurally different NSAIDs, indomethacin and ibuprofen, and a COX-2-selective NSAID, meloxicam, on urine output and AQP2 expression were investigated in kidneys removed under terminal anesthesia. All the NSAIDs decreased AQP2 expression significantly in water-restricted rats but did not significantly alter PGE excretion. In water-loaded rats, the effects were less marked, and meloxicam had no significant effect. Consistent with this, ibuprofen prevented the increase in AQP2 expression seen in response to dehydration. These results demonstrate that NSAIDs decrease AQP2 protein abundance, particularly during adaptation during dehydration. This may be of particular significance in older and critically ill patients, who are prone to dehydration.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Acuaporina 2/metabolismo , Deshidratación/metabolismo , Adaptación Fisiológica , Animales , Antiinflamatorios no Esteroideos/química , Acuaporina 2/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Médula Renal/efectos de los fármacos , Médula Renal/metabolismo , Masculino , Ratas , Ratas Wistar , Organismos Libres de Patógenos Específicos , Relación Estructura-Actividad
2.
Am J Physiol Cell Physiol ; 295(5): C1247-60, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18787078

RESUMEN

Impairment of the normal spatiotemporal pattern of intracellular Ca(2+) ([Ca(2+)](i)) signaling, and in particular, the transition to an irreversible "Ca(2+) overload" response, has been implicated in various pathophysiological states. In some diseases, including pancreatitis, oxidative stress has been suggested to mediate this Ca(2+) overload and the associated cell injury. We have previously demonstrated that oxidative stress with hydrogen peroxide (H(2)O(2)) evokes a Ca(2+) overload response and inhibition of plasma membrane Ca(2+)-ATPase (PMCA) in rat pancreatic acinar cells (Bruce JI and Elliott AC. Am J Physiol Cell Physiol 293: C938-C950, 2007). The aim of the present study was to further examine this oxidant-impaired inhibition of the PMCA, focusing on the role of the mitochondria. Using a [Ca(2+)](i) clearance assay in which mitochondrial Ca(2+) uptake was blocked with Ru-360, H(2)O(2) (50 microM-1 mM) markedly inhibited the PMCA activity. This H(2)O(2)-induced inhibition of the PMCA correlated with mitochondrial depolarization (assessed using tetramethylrhodamine methylester fluorescence) but could occur without significant ATP depletion (assessed using Magnesium Green fluorescence). The H(2)O(2)-induced PMCA inhibition was sensitive to the mitochondrial permeability transition pore (mPTP) inhibitors, cyclosporin-A and bongkrekic acid. These data suggest that oxidant-induced opening of the mPTP and mitochondrial depolarization may lead to an inhibition of the PMCA that is independent of mitochondrial Ca(2+) handling and ATP depletion, and we speculate that this may involve the release of a mitochondrial factor. Such a phenomenon may be responsible for the Ca(2+) overload response, and for the transition between apoptotic and necrotic cell death thought to be important in many disease states.


Asunto(s)
Señalización del Calcio , Mitocondrias/metabolismo , Estrés Oxidativo , Páncreas Exocrino/enzimología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antimicina A/farmacología , Bioensayo , Ácido Bongcréquico/farmacología , Señalización del Calcio/efectos de los fármacos , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Ciclosporina/farmacología , Peróxido de Hidrógeno/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Oligomicinas/farmacología , Estrés Oxidativo/efectos de los fármacos , Páncreas Exocrino/efectos de los fármacos , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Compuestos de Rutenio/farmacología , Factores de Tiempo , Desacopladores/farmacología
3.
J Biol Chem ; 282(52): 37678-93, 2007 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-17938178

RESUMEN

Cross-talk between intracellular calcium ([Ca(2+)](i)) signaling and cAMP defines the specificity of stimulus-response coupling in a variety of cells. Previous studies showed that protein kinase A (PKA) potentiates and phosphorylates the plasma membrane Ca(2+)-ATPase (PMCA) in a Ca(2+)-dependent manner in parotid acinar cells (Bruce, J. I. E., Yule, D. I., and Shuttleworth, T. J. (2002) J. Biol. Chem. 277, 48172-48181). The aim of this study was to further investigate the spatial regulation of [Ca(2+)](i) clearance in parotid acinar cells. Par-C10 cells were used to functionally isolate the apical and basolateral PMCA activity by applying La(3+) to the opposite side to inhibit the PMCA. Activation of PKA (using forskolin) differentially potentiated apical [Ca(2+)](i) clearance in mouse parotid acinar cells and apical PMCA activity in Par-C10 cells. Immunofluorescence of parotid tissue slices revealed that PMCA1 was distributed throughout the plasma membrane, PMCA2 was localized to the basolateral membrane, and PMCA4 was localized to the apical membrane of parotid acinar cells. However, in situ phosphorylation assays demonstrated that PMCA1 was the only isoform phosphorylated by PKA following stimulation. Similarly, immunofluorescence of acutely isolated parotid acinar cells showed that the regulatory subunit of PKA (RIIbeta) translocated to the apical region following stimulation. These data suggest that PKA-mediated phosphorylation of PMCA1 differentially regulates [Ca(2+)](i) clearance in the apical region of parotid acinar cells because of a dynamic translocation of PKA. Such tight spatial regulation of Ca(2+) efflux is likely important for the fine-tuning of Ca(2+)-dependent effectors close to the apical membrane important for the regulation of fluid secretion and exocytosis.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Glándula Parótida/citología , Glándula Parótida/metabolismo , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Colforsina/metabolismo , Cinética , Ratones , Modelos Biológicos , Fosforilación , Transporte de Proteínas , Ratas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA