Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Cancer ; 4(10): 1418-1436, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37697045

RESUMEN

Glioblastoma (GBM) is an incurable brain cancer that lacks effective therapies. Here we show that EAG2 and Kvß2, which are predominantly expressed by GBM cells at the tumor-brain interface, physically interact to form a potassium channel complex due to a GBM-enriched Kvß2 isoform. In GBM cells, EAG2 localizes at neuron-contacting regions in a Kvß2-dependent manner. Genetic knockdown of the EAG2-Kvß2 complex decreases calcium transients of GBM cells, suppresses tumor growth and invasion and extends the survival of tumor-bearing mice. We engineered a designer peptide to disrupt EAG2-Kvß2 interaction, thereby mitigating tumor growth in patient-derived xenograft and syngeneic mouse models across GBM subtypes without overt toxicity. Neurons upregulate chemoresistant genes in GBM cells in an EAG2-Kvß2-dependent manner. The designer peptide targets neuron-associated GBM cells and possesses robust efficacy in treating temozolomide-resistant GBM. Our findings may lead to the next-generation therapeutic agent to benefit patients with GBM.


Asunto(s)
Glioblastoma , Humanos , Ratones , Animales , Glioblastoma/tratamiento farmacológico , Temozolomida/farmacología , Temozolomida/uso terapéutico , Canales de Potasio Éter-A-Go-Go/uso terapéutico , Modelos Animales de Enfermedad , Péptidos/uso terapéutico , Neuronas/patología
2.
Trends Pharmacol Sci ; 42(5): 367-384, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33752907

RESUMEN

Force is everywhere. Through cell-intrinsic activities and interactions with the microenvironment, cells generate, transmit, and sense mechanical forces, such as compression, tension, and shear stress. These forces shape the mechanical properties of cells and tissues. Akin to how balanced biochemical signaling safeguards physiological processes, a mechanical optimum is required for homeostasis. The brain constructs a mechanical optimum from its cellular and extracellular constituents. However, in brain cancer, the mechanical properties are disrupted: tumor and nontumoral cells experience dysregulated solid and fluid stress, while tumor tissue develops altered stiffness. Mechanosensitive (MS) ion channels perceive mechanical cues to govern ion flux and cellular signaling. In this review, we describe the mechanical properties of the brain in healthy and cancer states and illustrate MS ion channels as sensors of mechanical cues to regulate malignant growth. Targeting MS ion channels offers disease insights at the interface of cancer, neuroscience, and mechanobiology to reveal therapeutic opportunities in brain tumors.


Asunto(s)
Neoplasias Encefálicas , Mecanotransducción Celular , Encéfalo/metabolismo , Humanos , Canales Iónicos/metabolismo , Transducción de Señal , Microambiente Tumoral
3.
Adv Exp Med Biol ; 1218: 39-58, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32060870

RESUMEN

During central nervous system (CNS) development, a complex series of events play out, starting with the establishment of neural progenitor cells, followed by their asymmetric division and formation of lineages and the differentiation of neurons and glia. Studies in the Drosophila melanogaster embryonic CNS have revealed that the Notch signal transduction pathway plays at least five different and distinct roles during these events. Herein, we review these many faces of Notch signalling and discuss the mechanisms that ensure context-dependent and compartment-dependent signalling. We conclude by discussing some outstanding issues regarding Notch signalling in this system, which likely have bearing on Notch signalling in many species.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales
4.
Cell Rep ; 29(11): 3636-3651.e3, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31825841

RESUMEN

In the developing Drosophila central nervous system (CNS), neural progenitor (neuroblast [NB]) selection is gated by lateral inhibition, controlled by Notch signaling and proneural genes. However, proneural mutants still generate many NBs, indicating the existence of additional proneural genes. Moreover, recent studies reveal involvement of key epithelial-mesenchymal transition (EMT) genes in NB selection, but the regulatory interplay between Notch signaling and the EMT machinery is unclear. We find that SoxNeuro (SoxB family) and worniu (Snail family) are integrated with the Notch pathway, and constitute the missing proneural genes. Notch signaling, the proneural, SoxNeuro, and worniu genes regulate key EMT genes to orchestrate the NB selection process. Hence, we uncover an expanded lateral inhibition network for NB selection and demonstrate its link to key players in the EMT machinery. The evolutionary conservation of the genes involved suggests that the Notch-SoxB-Snail-EMT network may control neural progenitor selection in many other systems.


Asunto(s)
Proteínas de Drosophila/metabolismo , Transición Epitelial-Mesenquimal , Células-Madre Neurales/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción SOX/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células-Madre Neurales/citología , Neurogénesis , Receptores Notch/genética , Factores de Transcripción SOX/genética , Transducción de Señal , Factores de Transcripción/genética
5.
PLoS Biol ; 17(2): e3000163, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30807568

RESUMEN

During central nervous system (CNS) development, genetic programs establish neural stem cells and drive both stem and daughter cell proliferation. However, the prominent anterior expansion of the CNS implies anterior-posterior (A-P) modulation of these programs. In Drosophila, a set of neural stem cell factors acts along the entire A-P axis to establish neural stem cells. Brain expansion results from enhanced stem and daughter cell proliferation, promoted by a Polycomb Group (PcG)->Homeobox (Hox) homeotic network. But how does PcG->Hox modulate neural-stem-cell-factor activity along the A-P axis? We find that the PcG->Hox network creates an A-P expression gradient of neural stem cell factors, thereby driving a gradient of proliferation. PcG mutants can be rescued by misexpression of the neural stem cell factors or by mutation of one single Hox gene. Hence, brain expansion results from anterior enhancement of core neural-stem-cell-factor expression, mediated by PcG repression of brain Hox expression.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Homeodominio/genética , Células-Madre Neurales/metabolismo , Proteínas del Grupo Polycomb/genética , Factor de Células Madre/genética , Animales , Encéfalo/crecimiento & desarrollo , Proliferación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Homeodominio/metabolismo , Mutación , Células-Madre Neurales/citología , Neurogénesis/genética , Proteínas del Grupo Polycomb/metabolismo , Transducción de Señal , Factor de Células Madre/metabolismo
6.
Dev Cell ; 43(3): 332-348.e4, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29112852

RESUMEN

Great progress has been made in identifying transcriptional programs that establish stem cell identity. In contrast, we have limited insight into how these programs are down-graded in a timely manner to halt proliferation and allow for cellular differentiation. Drosophila embryonic neuroblasts undergo such a temporal progression, initially dividing to bud off daughters that divide once (type I), then switching to generating non-dividing daughters (type 0), and finally exiting the cell cycle. We identify six early transcription factors that drive neuroblast and type I daughter proliferation. Early factors are gradually replaced by three late factors, acting to trigger the type I→0 daughter proliferation switch and eventually to stop neuroblasts. Early and late factors regulate each other and four key cell-cycle genes, providing a logical genetic pathway for these transitions. The identification of this extensive driver-stopper temporal program controlling neuroblast lineage progression may have implications for studies in many other systems.


Asunto(s)
Ciclo Celular/fisiología , Linaje de la Célula , Proliferación Celular/fisiología , Drosophila melanogaster/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células-Madre Neurales/citología , Animales , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
7.
G3 (Bethesda) ; 6(10): 3229-3239, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27520958

RESUMEN

The Paf1 protein complex (Paf1C) is increasingly recognized as a highly conserved and broadly utilized regulator of a variety of transcriptional processes. These include the promotion of H3K4 and H3K36 trimethylation, H2BK123 ubiquitination, RNA Pol II transcriptional termination, and also RNA-mediated gene silencing. Paf1C contains five canonical protein components, including Paf1 and Ctr9, which are critical for overall complex integrity, as well as Rtf1, Leo1, and Cdc73/Parafibromin(Hrpt2)/Hyrax. In spite of a growing appreciation for the importance of Paf1C from yeast and mammalian studies, there has only been limited work in Drosophila Here, we provide the first detailed phenotypic study of Ctr9 function in Drosophila We found that Ctr9 mutants die at late embryogenesis or early larval life, but can be partly rescued by nervous system reexpression of Ctr9 We observed a number of phenotypes in Ctr9 mutants, including increased neuroblast numbers, increased nervous system proliferation, as well as downregulation of many neuropeptide genes. Analysis of cell cycle and regulatory gene expression revealed upregulation of the E2f1 cell cycle factor, as well as changes in Antennapedia and Grainy head expression. We also found reduction of H3K4me3 modification in the embryonic nervous system. Genome-wide transcriptome analysis points to additional downstream genes that may underlie these Ctr9 phenotypes, revealing gene expression changes in Notch pathway target genes, cell cycle genes, and neuropeptide genes. In addition, we find significant effects on the gene expression of metabolic genes. These findings reveal that Ctr9 is an essential gene that is necessary at multiple stages of nervous system development, and provides a starting point for future studies of the Paf1C in Drosophila.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Sistema Nervioso/metabolismo , Animales , Animales Modificados Genéticamente , Carboxiliasas/metabolismo , Ciclo Celular/genética , Proliferación Celular , Drosophila/embriología , Epigénesis Genética , Expresión Génica , Genes Reporteros , Estudios de Asociación Genética , Pruebas Genéticas , Histonas/metabolismo , Mutación , Sistema Nervioso/embriología , Neuropéptidos/metabolismo , Fenotipo , Transducción de Señal , Factores de Transcripción/genética
8.
PLoS Biol ; 14(5): e1002450, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27148744

RESUMEN

Specification of the myriad of unique neuronal subtypes found in the nervous system depends upon spatiotemporal cues and terminal selector gene cascades, often acting in sequential combinatorial codes to determine final cell fate. However, a specific neuronal cell subtype can often be generated in different parts of the nervous system and at different stages, indicating that different spatiotemporal cues can converge on the same terminal selectors to thereby generate a similar cell fate. However, the regulatory mechanisms underlying such convergence are poorly understood. The Nplp1 neuropeptide neurons in the Drosophila ventral nerve cord can be subdivided into the thoracic-ventral Tv1 neurons and the dorsal-medial dAp neurons. The activation of Nplp1 in Tv1 and dAp neurons depends upon the same terminal selector cascade: col>ap/eya>dimm>Nplp1. However, Tv1 and dAp neurons are generated by different neural progenitors (neuroblasts) with different spatiotemporal appearance. Here, we find that the same terminal selector cascade is triggered by Kr/pdm>grn in dAp neurons, but by Antp/hth/exd/lbe/cas in Tv1 neurons. Hence, two different spatiotemporal combinations can funnel into a common downstream terminal selector cascade to determine a highly related cell fate.


Asunto(s)
Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Genetics ; 200(4): 1229-44, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26092715

RESUMEN

The expression of neuropeptides is often extremely restricted in the nervous system, making them powerful markers for addressing cell specification . In the developing Drosophila ventral nerve cord, only six cells, the Ap4 neurons, of some 10,000 neurons, express the neuropeptide FMRFamide (FMRFa). Each Ap4/FMRFa neuron is the last-born cell generated by an identifiable and well-studied progenitor cell, neuroblast 5-6 (NB5-6T). The restricted expression of FMRFa and the wealth of information regarding its gene regulation and Ap4 neuron specification makes FMRFa a valuable readout for addressing many aspects of neural development, i.e., spatial and temporal patterning cues, cell cycle control, cell specification, axon transport, and retrograde signaling. To this end, we have conducted a forward genetic screen utilizing an Ap4-specific FMRFa-eGFP transgenic reporter as our readout. A total of 9781 EMS-mutated chromosomes were screened for perturbations in FMRFa-eGFP expression, and 611 mutants were identified. Seventy-nine of the strongest mutants were mapped down to the affected gene by deficiency mapping or whole-genome sequencing. We isolated novel alleles for previously known FMRFa regulators, confirming the validity of the screen. In addition, we identified novel essential genes, including several with previously undefined functions in neural development. Our identification of genes affecting most major steps required for successful terminal differentiation of Ap4 neurons provides a comprehensive view of the genetic flow controlling the generation of highly unique neuronal cell types in the developing nervous system.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/genética , FMRFamida/metabolismo , Genes de Insecto/genética , Neuronas/citología , Neuronas/metabolismo , Animales , Mapeo Cromosómico , Femenino , Masculino , Mutagénesis , Mutación , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA