Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 40(9): 1834-1848, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28556250

RESUMEN

Nitric oxide (NO) is extensively involved in various growth processes and stress responses in plants; however, the regulatory mechanism of NO-modulated cellular sugar metabolism is still largely unknown. Here, we report that NO significantly inhibited monosaccharide catabolism by modulating sugar metabolic enzymes through S-nitrosylation (mainly by oxidizing dihydrolipoamide, a cofactor of pyruvate dehydrogenase). These S-nitrosylation modifications led to a decrease in cellular glycolysis enzymes and ATP synthase activities as well as declines in the content of acetyl coenzyme A, ATP, ADP-glucose and UDP-glucose, which eventually caused polysaccharide-biosynthesis inhibition and monosaccharide accumulation. Plant developmental defects that were caused by high levels of NO included delayed flowering time, retarded root growth and reduced starch granule formation. These phenotypic defects could be mediated by sucrose supplementation, suggesting an essential role of NO-sugar cross-talks in plant growth and development. Our findings suggest that molecular manipulations could be used to improve fruit and vegetable sweetness.


Asunto(s)
Arabidopsis/metabolismo , Monosacáridos/metabolismo , Óxido Nítrico/farmacología , Complejos de ATP Sintetasa/metabolismo , Adenosina Difosfato Glucosa/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Glucólisis/efectos de los fármacos , Mutación/genética , Nitrosación , Oxidación-Reducción , Fenotipo , Desarrollo de la Planta/efectos de los fármacos , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Solubilidad , Almidón/metabolismo , Sacarosa/farmacología , Ácido Tióctico/análogos & derivados , Ácido Tióctico/metabolismo , Uridina Difosfato Glucosa/metabolismo
2.
Plant J ; 49(2): 354-66, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17156412

RESUMEN

Here we report the adaptation and optimization of an efficient, accurate and inexpensive assay that employs custom-designed silicon-based optical thin-film biosensor chips to detect unique transgenes in genetically modified (GM) crops and SNP markers in model plant genomes. Briefly, aldehyde-attached sequence-specific single-stranded oligonucleotide probes are arrayed and covalently attached to a hydrazine-derivatized biosensor chip surface. Unique DNA sequences (or genes) are detected by hybridizing biotinylated PCR amplicons of the DNA sequences to probes on the chip surface. In the SNP assay, target sequences (PCR amplicons) are hybridized in the presence of a mixture of biotinylated detector probes and a thermostable DNA ligase. Only perfect matches between the probe and target sequences, but not those with even a single nucleotide mismatch, can be covalently fixed on the chip surface. In both cases, the presence of specific target sequences is signified by a color change on the chip surface (gold to blue/purple) after brief incubation with an anti-biotin IgG horseradish peroxidase (HRP) to generate a precipitable product from an HRP substrate. Highly sensitive and accurate identification of PCR targets can be completed within 30 min. This assay is extremely robust, exhibits high sensitivity and specificity, and is flexible from low to high throughput and very economical. This technology can be customized for any nucleotide sequence-based identification assay and widely applied in crop breeding, trait mapping, and other work requiring positive detection of specific nucleotide sequences.


Asunto(s)
Técnicas Biosensibles/métodos , ADN de Plantas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Alelos , Secuencia de Bases , ADN de Plantas/análisis , Genes de Plantas/genética , Modelos Genéticos , Mutación , Sondas de Oligonucleótidos/genética , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
3.
Plant Mol Biol ; 61(6): 845-61, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16927200

RESUMEN

Elucidating the regulatory mechanisms of plant organ formation is an important component of plant developmental biology and will be useful for crop improvement applications. Plant organ formation, or organogenesis, occurs when a group of primordial cells differentiates into an organ, through a well-orchestrated series of events, with a given shape, structure and function. Research over the past two decades has elucidated the molecular mechanisms of organ identity and dorsalventral axis determinations. However, little is known about the molecular mechanisms underlying the successive processes. To develop an effective approach for studying organ formation at the molecular level, we generated organ-specific gene expression profiles (GEPs) reflecting early development in rice stamen. In this study, we demonstrated that the GEPs are highly correlated with early stamen development, suggesting that this analysis is useful for dissecting stamen development regulation. Based on the molecular and morphological correlation, we found that over 26 genes, that were preferentially up-regulated during early stamen development, may participate in stamen development regulation. In addition, we found that differentially expressed genes during early stamen development are clustered into two clades, suggesting that stamen development may comprise of two distinct phases of pattern formation and cellular differentiation. Moreover, the organ-specific quantitative changes in gene expression levels may play a critical role for regulating plant organ formation.


Asunto(s)
Flores/genética , Perfilación de la Expresión Génica , Oryza/genética , Análisis por Conglomerados , Etiquetas de Secuencia Expresada , Flores/crecimiento & desarrollo , Flores/ultraestructura , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Hibridación in Situ , Microscopía Electrónica de Rastreo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/crecimiento & desarrollo , Polen/genética , Polen/crecimiento & desarrollo , Polen/ultraestructura , Factores de Tiempo
4.
Planta ; 220(2): 230-40, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15290297

RESUMEN

To understand the regulatory mechanisms governing unisexual flower development in cucumber, we conducted a systematic morphogenetic analysis of male and female flower development, examined the dynamic changes in expression of the C-class floral organ identity gene CUM1, and assessed the extent of DNA damage in inappropriate carpels of male flowers. Accordingly, based on the occurrence of distinct morphological events, we divided the floral development into 12 stages ranging from floral meristem initiation to anthesis. As a result of our investigation we found that the arrest of stamen development in female flowers, which occurs just after the differentiation between the anther and filament, is mainly restricted to the primordial anther, and that it is coincident with down-regulation of CUM1 gene expression. In contrast, the arrest of carpel development in the male flowers occurs prior to the differentiation between the stigma and ovary, given that no indication of ovary differentiation was observed even though CUM1 gene expression remained detectable throughout the development of the stigma-like structures. Although the male and female reproductive organs have distinctive characteristics in terms of organ differentiation, there are two common features regarding organ arrest. The first is that the arrest of the inappropriate organ does not affect the entirety of the organ uniformly but occurs only in portions of the organs. The second feature is that all the arrested portions in both reproductive organs are spore-bearing parts.


Asunto(s)
Cucumis sativus/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Cucumis sativus/genética , Cucumis sativus/ultraestructura , Flores/metabolismo , Flores/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/biosíntesis , Proteínas de Dominio MADS/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética
5.
Planta ; 217(6): 888-95, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12898252

RESUMEN

To investigate the regulatory mechanisms of sex expression in cucumber, morphological observations and biochemical analyses were carried out on inappropriate stamen development of female flowers of cucumber. It was found that developmental arrest of the inappropriate stamen mainly occurs at the anther primordium. This arrest is closely correlated with DNA damage, as detected by TUNEL assay, and might result from anther-specific DNase activation. It was also found that the DNA damage does not lead to cell degeneration, although chromatin condensation is observed in the anther primordia.


Asunto(s)
Cucumis sativus/genética , Daño del ADN , Flores/genética , Apoptosis , Cucumis sativus/citología , Cucumis sativus/fisiología , ADN de Plantas/genética , Flores/citología , Flores/fisiología , Flores/ultraestructura , Etiquetado Corte-Fin in Situ
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA