Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 9(11): e21920, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027626

RESUMEN

Matcha has been globally valued by consumers for its distinctive fragrance and flavor since ancient times. Currently, the protected designation of origin (PDO) certified matcha, characterized by unique sensory attributes, has garnered renewed interest from consumers and the industry. Given the challenges associated with assessing sensory perceptions, the origin of PDO-certified matcha samples from Guizhou was determined using NIRS and LC-MS platforms. Notably, the accuracy of our established attribute models, based on informative wavelengths selected by the CARS-PLS method, exceeds 0.9 for five sensory attributes, particularly the particle homogeneity attribute (with a validation correlation coefficient of 0.9668). Moreover, an LC-MS method was utilized to analyze non-target matcha metabolites to identify the primary flavor compounds associated with each flavor attribute and to pinpoint the key constituents responsible for variations in grade and flavor intensity. Additionally, high three-way intercorrelations between descriptive sensory attributes, metabolites, and the selected informative wavelengths were observed through network analysis, with correlation coefficients calculated to quantify these relationships. In this research, the integration of matcha chemical composition and sensory panel data was utilized to develop predictive models for assessing the flavor profile of matcha based on its chemical properties.

2.
J Anal Methods Chem ; 2021: 9563162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34820146

RESUMEN

The quality of tea leaves (e.g., their color, appearance, and taste) can be directly influenced by the tea production process, which is closely connected with the content of a number of chemical components formed during the production of the tea leaves. However, the production process is now controlled by people's experience, making its quality significantly different. NIRS is a time-saving, cost-saving, and nondestructive method. Therefore, it is necessary to introduce NIRS technology into the quality control of the tea production process. In this study, a quantitative analysis model of caffeine, epigallocatechin-3-gallate (EGCG), and moisture content was established by near-infrared spectroscopy (NIRS) which was united simultaneously with partial least squares (PLSR) for online process monitoring of tea production. The model parameters show that the established model has fine robustness and outstanding measuring accuracy. Then, the feasibility of the established method is verified by the traditional method. Through the verification of the precision of the instrument and the stability of the sample, it is clarified that the model can be further utilized to monitor tea product quality online in a productive process.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119847, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-33940571

RESUMEN

Nondestructive instrumental identification of the green tea quality instead of professional human panel tests is highly desired for industrial application recently. The special flavor is a key quality-trait that influence consumer preference. However, flavonoids, as well as sensory-associated compounds, which play a critical role in the quality-traits profile of green tea samples have been poorly investigated. In this study, we were proposing an objective and accurate near infrared spectroscopy (NIRS) profile to support quality control within the entire green tea sensory evaluation chain, the complexity of green tea samples' sensory analysis was performed by two complementary methods: the standard calculation and the novel NIRS roadmap coupled with chemometrics. The green tea samples' physical quality, gustatory index, and nutritional index were measured respectively, which taking into consideration the gustatory evaluation of green tea for five commercially representative overall quality ("very bad", "bad", "regular", "good" and "excellent"). Our findings highlight the underexplored role of NIRS in chemical-to-sensory relationships and its widespread importance and utility in green tea quality improvement. Collectively, the comprehensive characterization of sensory-associated attribution allowed the identification of a wide array of spectrometric features, mostly related to moisture, soluble solids (SS), tea polyphenol (TPP), epigallocatechin gallate (EGCG), epicatechin (EC) and tea polysaccharide (TPS), which can be used as putative biomarkers to rapidly evaluate the green tea flavor variations related to rank differences. Otherwise, the NIRS' data were split into the calibration (n = 80) and prediction (n = 40) set independently, which showed high correlation coefficient with Rp-values of 0.9024, 0.9020 in physical and total cup quality, respectively. In this research, we demonstrated that NIRS was an easily-generated strategy and able to close the loop to feedback into the process for advanced process control. However, the established models should be improved by more green tea samples from different regions.


Asunto(s)
Catequina , , Calibración , Catequina/análisis , Flavonoides , Humanos , Polifenoles , Espectroscopía Infrarroja Corta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA