Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ChemistryOpen ; 13(7): e202300263, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38426687

RESUMEN

Organophosphates (OPs) are a class of neurotoxic acetylcholinesterase inhibitors including widely used pesticides as well as nerve agents such as VX and VR. Current treatment of these toxins relies on reactivating acetylcholinesterase, which remains ineffective. Enzymatic scavengers are of interest for their ability to degrade OPs systemically before they reach their target. Here we describe a library of computationally designed variants of phosphotriesterase (PTE), an enzyme that is known to break down OPs. The mutations G208D, F104A, K77A, A80V, H254G, and I274N broadly improve catalytic efficiency of VX and VR hydrolysis without impacting the structure of the enzyme. The mutation I106 A improves catalysis of VR and L271E abolishes activity, likely due to disruptions of PTE's structure. This study elucidates the importance of these residues and contributes to the design of enzymatic OP scavengers with improved efficiency.


Asunto(s)
Hidrolasas de Triéster Fosfórico , Hidrolasas de Triéster Fosfórico/metabolismo , Hidrolasas de Triéster Fosfórico/química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Compuestos Organotiofosforados/química , Compuestos Organotiofosforados/metabolismo , Mutación , Hidrólisis , Modelos Moleculares
2.
Biotechnol Bioeng ; 117(7): 1970-1978, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32239488

RESUMEN

Kinetic enhancement of organophosphate hydrolysis is a long-standing challenge in catalysis. For prophylactic treatment against organophosphate exposure, enzymatic hydrolysis needs to occur at high rates in the presence of low substrate concentrations and enzymatic activity should persist over days and weeks. Here, the conjugation of small DNA scaffolds was used to introduce substrate binding sites with micromolar affinity to VX, paraoxon, and methyl-parathion in close proximity to the enzyme phosphotriesterase (PTE). The result was a decrease in KM and increase in the rate at low substrate concentrations. An optimized system for paraoxon hydrolysis decreased KM by 11-fold, with a corresponding increase in second-order rate constant. The initial rates of VX and methyl-parathion hydrolysis were also increased by 3.1- and 6.7-fold, respectively. The designed scaffolds not only increased the local substrate concentration, but they also resulted in increased stability and PTE-DNA particle size tuning between 25 and ~150 nm. The scaffold engineering approach taken here is focused on altering the local chemical and physical microenvironment around the enzyme and is therefore compatible with active site engineering via combinatorial and computational approaches.


Asunto(s)
Sustancias para la Guerra Química/metabolismo , Agentes Nerviosos/metabolismo , Compuestos Organotiofosforados/metabolismo , Animales , Sitios de Unión , Línea Celular , Sustancias para la Guerra Química/química , ADN/química , ADN/metabolismo , Expresión Génica , Humanos , Hidrólisis , Nanoestructuras/química , Nanotecnología , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/metabolismo , Especificidad por Sustrato
3.
Sci Transl Med ; 11(473)2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30602537

RESUMEN

Nerve agents are a class of organophosphorus compounds (OPs) that blocks communication between nerves and organs. Because of their acute neurotoxicity, it is extremely difficult to rescue the victims after exposure. Numerous efforts have been devoted to search for an effective prophylactic nerve agent bioscavenger to prevent the deleterious effects of these compounds. However, low scavenging efficiency, unfavorable pharmacokinetics, and immunological problems have hampered the development of effective drugs. Here, we report the development and testing of a nanoparticle-based nerve agent bioscavenger (nanoscavenger) that showed long-term protection against OP intoxication in rodents. The nanoscavenger, which catalytically breaks down toxic OP compounds, showed a good pharmacokinetic profile and negligible immune response in a rat model of OP intoxication. In vivo administration of the nanoscavenger before or after OP exposure in animal models demonstrated protective and therapeutic efficacy. In a guinea pig model, a single prophylactic administration of the nanoscavenger effectively prevented lethality after multiple sarin exposures over a 1-week period. Our results suggest that the prophylactic administration of the nanoscavenger might be effective in preventing the toxic effects of OP exposure in humans.


Asunto(s)
Nanopartículas/química , Agentes Nerviosos/toxicidad , Sustancias Protectoras/farmacología , Administración Intravenosa , Animales , Femenino , Cobayas , Masculino , Nanopartículas/administración & dosificación , Paraoxon/toxicidad , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacocinética , Ratas Sprague-Dawley , Sarín/toxicidad , Análisis de Supervivencia , Factores de Tiempo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA