Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Ageing Res Rev ; 95: 102213, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38309591

RESUMEN

Pharmacological interventions are emerging as potential avenues of alleviating age-related disease. However, the knowledge of ongoing clinical trials as they relate to aging and pharmacological interventions is dispersed across a variety of mediums. In this review we summarize 136 age-related clinical trials that have been completed or are ongoing. Furthermore, we establish a database that describe the trials (AgingDB, www.agingdb.com) keeping track of the previous and ongoing clinical trials, alongside their outcomes. The aim of this review and database is to give people the ability to easily query for their trial of interest and stay up to date on the latest results. In sum, herein we give an overview of the current pharmacological strategies that have been applied to target human aging.


Asunto(s)
Envejecimiento , Humanos , Estudios Longitudinales
2.
Aging (Albany NY) ; 16(3): 2026-2046, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38345566

RESUMEN

Progeroid disorders are a heterogenous group of rare and complex hereditary syndromes presenting with pleiotropic phenotypes associated with normal aging. Due to the large variation in clinical presentation the diseases pose a diagnostic challenge for clinicians which consequently restricts medical research. To accommodate the challenge, we compiled a list of known progeroid syndromes and calculated the mean prevalence of their associated phenotypes, defining what we term the 'progeria phenome'. The data were used to train a support vector machine that is available at https://www.mitodb.com and able to classify progerias based on phenotypes. Furthermore, this allowed us to investigate the correlation of progeroid syndromes and syndromes with various pathogenesis using hierarchical clustering algorithms and disease networks. We detected that ataxia-telangiectasia like disorder 2, spastic paraplegia 49 and Meier-Gorlin syndrome display strong association to progeroid syndromes, thereby implying that the syndromes are previously unrecognized progerias. In conclusion, our study has provided tools to evaluate the likelihood of a syndrome or patient being progeroid. This is a considerable step forward in our understanding of what constitutes a premature aging disorder and how to diagnose them.


Asunto(s)
Envejecimiento Prematuro , Síndrome de Cockayne , Progeria , Humanos , Progeria/genética , Progeria/patología , Envejecimiento Prematuro/genética , Envejecimiento , Fenotipo , Trastornos del Crecimiento/complicaciones
3.
Front Aging ; 3: 820215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821843

RESUMEN

The risk of morbidity and mortality increases exponentially with age. Chronic inflammation, accumulation of DNA damage, dysfunctional mitochondria, and increased senescent cell load are factors contributing to this. Mechanistic investigations have revealed specific pathways and processes which, proposedly, cause age-related phenotypes such as frailty, reduced physical resilience, and multi-morbidity. Among promising treatments alleviating the consequences of aging are caloric restriction and pharmacologically targeting longevity pathways such as the mechanistic target of rapamycin (mTOR), sirtuins, and anti-apoptotic pathways in senescent cells. Regulation of these pathways and processes has revealed significant health- and lifespan extending results in animal models. Nevertheless, it remains unclear if similar results translate to humans. A requirement of translation are the development of age- and morbidity associated biomarkers as longitudinal trials are difficult and not feasible, practical, nor ethical when human life span is the endpoint. Current biomarkers and the results of anti-aging intervention studies in humans will be covered within this paper. The future of clinical trials targeting aging may be phase 2 and 3 studies with larger populations if safety and tolerability of investigated medication continues not to be a hurdle for further investigations.

4.
Cells ; 11(3)2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35159331

RESUMEN

DNA mismatch repair (MMR) is a highly conserved pathway that corrects both base-base mispairs and insertion-deletion loops (IDLs) generated during DNA replication. Defects in MMR have been linked to carcinogenesis and drug resistance. However, the regulation of MMR is poorly understood. Interestingly, CNOT6 is one of four deadenylase subunits in the conserved CCR4-NOT complex and it targets poly(A) tails of mRNAs for degradation. CNOT6 is overexpressed in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML) and androgen-independent prostate cancer cells, which suggests that an altered expression of CNOT6 may play a role in tumorigenesis. Here, we report that a depletion of CNOT6 sensitizes human U2OS cells to N-methyl-N'nitro-N-nitrosoguanidine (MNNG) and leads to enhanced apoptosis. We also demonstrate that the depletion of CNOT6 upregulates MMR and decreases the mutation frequency in MMR-proficient cells. Furthermore, the depletion of CNOT6 increases the stability of mRNA transcripts from MMR genes, leading to the increased expression of MMR proteins. Our work provides insight into a novel CNOT6-dependent mechanism for regulating MMR.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Replicación del ADN , Apoptosis/genética , Reparación de la Incompatibilidad de ADN/genética , Humanos , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Nat Aging ; 2(8): 742-755, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-37118134

RESUMEN

Cellular senescence is an important factor in aging and many age-related diseases, but understanding its role in health is challenging due to the lack of exclusive or universal markers. Using neural networks, we predict senescence from the nuclear morphology of human fibroblasts with up to 95% accuracy, and investigate murine astrocytes, murine neurons, and fibroblasts with premature aging in culture. After generalizing our approach, the predictor recognizes higher rates of senescence in p21-positive and ethynyl-2'-deoxyuridine (EdU)-negative nuclei in tissues and shows an increasing rate of senescent cells with age in H&E-stained murine liver tissue and human dermal biopsies. Evaluating medical records reveals that higher rates of senescent cells correspond to decreased rates of malignant neoplasms and increased rates of osteoporosis, osteoarthritis, hypertension and cerebral infarction. In sum, we show that morphological alterations of the nucleus can serve as a deep learning predictor of senescence that is applicable across tissues and species and is associated with health outcomes in humans.


Asunto(s)
Envejecimiento Prematuro , Aprendizaje Profundo , Humanos , Ratones , Animales , Senescencia Celular/fisiología , Envejecimiento , Biomarcadores
6.
Ageing Res Rev ; 62: 101094, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32512174

RESUMEN

Ageing is arguably the most complex phenotype that occurs in humans. To understand and treat ageing as well as associated diseases, highly specialised technologies are emerging that reveal critical insight into the underlying mechanisms and provide new hope for previously untreated diseases. Herein, we describe the latest developments in cutting edge technologies applied across the field of ageing research. We cover emerging model organisms, high-throughput methodologies and machine-driven approaches. In all, this review will give you a glimpse of what will be pushing the field onwards and upwards.


Asunto(s)
Envejecimiento , Humanos
7.
Front Cell Dev Biol ; 8: 239, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373609

RESUMEN

Maintaining mitochondrial health is emerging as a keystone in aging and associated diseases. The selective degradation of mitochondria by mitophagy is of particular importance in keeping a pristine mitochondrial pool. Indeed, inherited monogenic diseases with defects in mitophagy display complex multisystem pathologies but particularly progressive neurodegeneration. Fortunately, therapies are being developed that target mitophagy allowing new hope for treatments for previously incurable diseases. Herein, we describe mitophagy and associated diseases, coin the term mitophaging and describe new small molecule interventions that target different steps in the mitophagic pathway. Consequently, several age-associated diseases may be treated by targeting mitophagy.

8.
Aging (Albany NY) ; 11(22): 9971-9981, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31770722

RESUMEN

An increasing aging population poses a significant challenge to societies worldwide. A better understanding of the molecular, cellular, organ, tissue, physiological, psychological, and even sociological changes that occur with aging is needed in order to treat age-associated diseases. The field of aging research is rapidly expanding with multiple advances transpiring in many previously disconnected areas. Several major pharmaceutical, biotechnology, and consumer companies made aging research a priority and are building internal expertise, integrating aging research into traditional business models and exploring new go-to-market strategies. Many of these efforts are spearheaded by the latest advances in artificial intelligence, namely deep learning, including generative and reinforcement learning. To facilitate these trends, the Center for Healthy Aging at the University of Copenhagen and Insilico Medicine are building a community of Key Opinion Leaders (KOLs) in these areas and launched the annual conference series titled "Aging Research and Drug Discovery (ARDD)" held in the capital of the pharmaceutical industry, Basel, Switzerland (www.agingpharma.org). This ARDD collection contains summaries from the 6th annual meeting that explored aging mechanisms and new interventions in age-associated diseases. The 7th annual ARDD exhibition will transpire 2nd-4th of September, 2020, in Basel.


Asunto(s)
Envejecimiento , Descubrimiento de Drogas , Investigación , Industria Farmacéutica , Humanos
9.
Hum Mol Genet ; 28(9): 1463-1473, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576445

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is caused by the expansion of CAG repeats in the ATXN3 gene leading to an elongated polyglutamine tract in the ataxin-3 protein. Previously, we demonstrated that symptoms of SCA3 are reversible in the first conditional mouse model for SCA3 directing ataxin-3 predominantly to the hindbrain. Here, we report on the effects of transgenic ataxin-3 expression in forebrain regions. Employing the Tet-off CamKII-promoter mouse line and our previously published SCA3 responder line, we generated double transgenic mice (CamKII/MJD77), which develop a neurological phenotype characterized by impairment in rotarod performance, and deficits in learning new motor tasks as well as hyperactivity. Ataxin-3 and ubiquitin-positive inclusions are detected in brains of double transgenic CamKII/MJD77 mice. After turning off the expression of pathologically expanded ataxin-3, these inclusions disappear. However, the observed phenotype could not be reversed, very likely due to pronounced apoptotic cell death in the frontal brain. Our data demonstrate that cerebellar expression is not required to induce a neurological phenotype using expanded ATXN3 as well as the pronounced sensibility of forebrain neurons for toxic ataxin-3.


Asunto(s)
Ataxina-3/genética , Lóbulo Frontal/metabolismo , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Neuronas/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Ataxina-3/metabolismo , Conducta Animal , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Modelos Animales de Enfermedad , Lóbulo Frontal/patología , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Inmunohistoquímica , Enfermedad de Machado-Joseph/patología , Ratones , Ratones Transgénicos , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Especificidad de Órganos/genética , Agregado de Proteínas , Agregación Patológica de Proteínas , Desempeño Psicomotor
10.
Int J Mol Sci ; 20(1)2018 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-30585186

RESUMEN

Human exonuclease 1 (EXO1), a 5'→3' exonuclease, contributes to the regulation of the cell cycle checkpoints, replication fork maintenance, and post replicative DNA repair pathways. These processes are required for the resolution of stalled or blocked DNA replication that can lead to replication stress and potential collapse of the replication fork. Failure to restart the DNA replication process can result in double-strand breaks, cell-cycle arrest, cell death, or cellular transformation. In this review, we summarize the involvement of EXO1 in the replication, DNA repair pathways, cell cycle checkpoints, and the link between EXO1 and cancer.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN , Exodesoxirribonucleasas/metabolismo , Apoptosis , Puntos de Control del Ciclo Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinación Homóloga , Humanos , Neoplasias/metabolismo , Neoplasias/patología
11.
Aging (Albany NY) ; 10(11): 3079-3088, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30425188

RESUMEN

Multiple interventions in the aging process have been discovered to extend the healthspan of model organisms. Both industry and academia are therefore exploring possible transformative molecules that target aging and age-associated diseases. In this overview, we summarize the presented talks and discussion points of the 5th Annual Aging and Drug Discovery Forum 2018 in Basel, Switzerland. Here academia and industry came together, to discuss the latest progress and issues in aging research. The meeting covered talks about the mechanistic cause of aging, how longevity signatures may be highly conserved, emerging biomarkers of aging, possible interventions in the aging process and the use of artificial intelligence for aging research and drug discovery. Importantly, a consensus is emerging both in industry and academia, that molecules able to intervene in the aging process may contain the potential to transform both societies and healthcare.

12.
N Engl J Med ; 378(5): 491-492, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29385361
13.
Autophagy ; 14(6): 1082-1083, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28976799

RESUMEN

The article discusses new findings on the role of the 4 human WIPI proteins at the onset of macroautophagy/autophagy. New insights revealing a circuit scaffold function of WIPI ß-propellers that interconnect autophagy signaling control with appropriate autophagosome formation are summarized.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Humanos , Modelos Biológicos , Estructura Secundaria de Proteína
15.
Nat Commun ; 8: 15637, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28561066

RESUMEN

Autophagy is controlled by AMPK and mTOR, both of which associate with ULK1 and control the production of phosphatidylinositol 3-phosphate (PtdIns3P), a prerequisite for autophagosome formation. Here we report that WIPI3 and WIPI4 scaffold the signal control of autophagy upstream of PtdIns3P production and have a role in the PtdIns3P effector function of WIPI1-WIPI2 at nascent autophagosomes. In response to LKB1-mediated AMPK stimulation, WIPI4-ATG2 is released from a WIPI4-ATG2/AMPK-ULK1 complex and translocates to nascent autophagosomes, controlling their size, to which WIPI3, in complex with FIP200, also contributes. Upstream, WIPI3 associates with AMPK-activated TSC complex at lysosomes, regulating mTOR. Our WIPI interactome analysis reveals the scaffold functions of WIPI proteins interconnecting autophagy signal control and autophagosome formation. Our functional kinase screen uncovers a novel regulatory link between LKB1-mediated AMPK stimulation that produces a direct signal via WIPI4, and we show that the AMPK-related kinases NUAK2 and BRSK2 regulate autophagy through WIPI4.


Asunto(s)
Autofagia , Proteínas Portadoras/química , Proteínas Serina-Treonina Quinasas/química , Transducción de Señal , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/química , Proteínas Relacionadas con la Autofagia/química , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Lisosomas/metabolismo , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/química , Unión Proteica , Conformación Proteica , Proteínas de Transporte Vesicular/química
16.
Biochem Soc Trans ; 42(5): 1414-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25233424

RESUMEN

Macroautophagy (autophagy hereafter) is an evolutionarily highly conserved catabolic process activated by eukaryotes in order to counteract cellular starvation. Autophagy leads to bulk degradation of cytoplasmic content in the lysosomal compartment, thereby clearing the cytoplasm and generating nutrients and energy. Upon autophagy initiation, cytoplasmic material becomes sequestered in newly formed double-membrane vesicles termed 'autophagosomes' that subsequently acquire acidic hydrolases for content destruction. The de novo biogenesis of autophagosomes often occurs at the endoplasmic reticulum (ER) and, in many cases, in close proximity to lipid droplets (LDs), intracellular neutral lipid storage reservoirs. LDs are targets of autophagic destruction, but have recently also been shown to contribute to autophagosome formation. In fact, some autophagy-related (Atg) proteins, such as microtubule-associated protein light chain 3 (LC3), Atg2 and Atg14L, functionally contribute to both LD and autophagosome biogenesis. In the present paper, we discuss Atg proteins, including members of the human WD-repeat protein interacting with phosphoinositides (WIPI) family that co-localize prominently with LC3, Atg2 and Atg14L to conceivably integrate LD and autophagosome dynamics.


Asunto(s)
Autofagia , Proteínas Portadoras/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Fagosomas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas Relacionadas con la Autofagia , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión a Fosfato , Multimerización de Proteína , Proteínas de Transporte Vesicular/metabolismo
17.
J Lipid Res ; 55(7): 1267-78, 2014 07.
Artículo en Inglés | MEDLINE | ID: mdl-24776541

RESUMEN

Autophagy is a lysosomal bulk degradation pathway for cytoplasmic cargo, such as long-lived proteins, lipids, and organelles. Induced upon nutrient starvation, autophagic degradation is accomplished by the concerted actions of autophagy-related (ATG) proteins. Here we demonstrate that two ATGs, human Atg2A and Atg14L, colocalize at cytoplasmic lipid droplets (LDs) and are functionally involved in controlling the number and size of LDs in human tumor cell lines. We show that Atg2A is targeted to cytoplasmic ADRP-positive LDs that migrate bidirectionally along microtubules. The LD localization of Atg2A was found to be independent of the autophagic status. Further, Atg2A colocalized with Atg14L under nutrient-rich conditions when autophagy was not induced. Upon nutrient starvation and dependent on phosphatidylinositol 3-phosphate [PtdIns(3)P] generation, both Atg2A and Atg14L were also specifically targeted to endoplasmic reticulum-associated early autophagosomal membranes, marked by the PtdIns(3)P effectors double-FYVE containing protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides 1 (WIPI-1), both of which function at the onset of autophagy. These data provide evidence for additional roles of Atg2A and Atg14L in the formation of early autophagosomal membranes and also in lipid metabolism.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Membrana Celular/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/genética , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo
18.
Autophagy ; 9(10): 1475-90, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23970164

RESUMEN

Cellular stress responses often involve elevation of cytosolic calcium levels, and this has been suggested to stimulate autophagy. Here, however, we demonstrated that agents that alter intracellular calcium ion homeostasis and induce ER stress-the calcium ionophore A23187 and the sarco/endoplasmic reticulum Ca (2+)-ATPase inhibitor thapsigargin (TG)-potently inhibit autophagy. This anti-autophagic effect occurred under both nutrient-rich and amino acid starvation conditions, and was reflected by a strong reduction in autophagic degradation of long-lived proteins. Furthermore, we found that the calcium-modulating agents inhibited autophagosome biogenesis at a step after the acquisition of WIPI1, but prior to the closure of the autophagosome. The latter was evident from the virtually complete inability of A23187- or TG-treated cells to sequester cytosolic lactate dehydrogenase. Moreover, we observed a decrease in both the number and size of starvation-induced EGFP-LC3 puncta as well as reduced numbers of mRFP-LC3 puncta in a tandem fluorescent mRFP-EGFP-LC3 cell line. The anti-autophagic effect of A23187 and TG was independent of ER stress, as chemical or siRNA-mediated inhibition of the unfolded protein response did not alter the ability of the calcium modulators to block autophagy. Finally, and remarkably, we found that the anti-autophagic activity of the calcium modulators did not require sustained or bulk changes in cytosolic calcium levels. In conclusion, we propose that local perturbations in intracellular calcium levels can exert inhibitory effects on autophagy at the stage of autophagosome expansion and closure.


Asunto(s)
Autofagia/efectos de los fármacos , Calcio/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Homeostasis/efectos de los fármacos , Tapsigargina/farmacología , Comunicación Celular/efectos de los fármacos , Comunicación Celular/fisiología , Línea Celular , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Espacio Intracelular/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Biochem Soc Trans ; 41(4): 962-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23863164

RESUMEN

Autophagy is a catabolic pathway in which the cell sequesters cytoplasmic material, including long-lived proteins, lipids and organelles, in specialized double-membrane vesicles, called autophagosomes. Subsequently, autophagosomes communicate with the lysosomal compartment and acquire acidic hydrolases for final cargo degradation. This process of partial self-eating secures the survival of eukaryotic cells during starvation periods and is critically regulated by mTORC1 (mammalian target of rapamycin complex 1). Under nutrient-poor conditions, inhibited mTORC1 permits localized PtdIns(3)P production at particular membranes that contribute to autophagosome formation. Members of the human WIPI (WD-repeat protein interacting with phosphoinositides) family fulfil an essential role as PtdIns(3)P effectors at the initiation step of autophagosome formation. In the present article, we discuss the role of human WIPIs in autophagy, and the identification of evolutionarily conserved amino acids of WIPI-1 that confer PtdIns(3)P binding downstream of mTORC1 inhibition. We also discuss the PtdIns(3)P effector function of WIPIs in the context of longevity and autophagy-related human diseases, such as cancer and neurodegeneration.


Asunto(s)
Autofagia , Longevidad , Proteínas de la Membrana/fisiología , Secuencia de Aminoácidos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos/fisiología , Fosfatidilinositoles/metabolismo , Unión Proteica , Homología de Secuencia de Aminoácido , Serina-Treonina Quinasas TOR/fisiología
20.
J Cell Sci ; 126(Pt 2): 593-604, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23230146

RESUMEN

Autophagy is a conserved degradative transport pathway. It is characterized by the formation of double-membrane autophagosomes at the phagophore assembly site (PAS). Atg18 is essential for autophagy but also for vacuole homeostasis and probably endosomal functions. This protein is basically a ß-propeller, formed by seven WD40 repeats, that contains a conserved FRRG motif that binds to phosphoinositides and promotes Atg18 recruitment to the PAS, endosomes and vacuoles. However, it is unknown how Atg18 association with these organelles is regulated, as the phosphoinositides bound by this protein are present on the surface of all of them. We have investigated Atg18 recruitment to the PAS and found that Atg18 binds to Atg2 through a specific stretch of amino acids in the ß-propeller on the opposite surface to the FRRG motif. As in the absence of the FRRG sequence, the inability of Atg18 to interact with Atg2 impairs its association with the PAS, causing an autophagy block. Our data provide a model whereby the Atg18 ß-propeller provides organelle specificity by binding to two determinants on the target membrane.


Asunto(s)
Autofagia/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas Relacionadas con la Autofagia , Sitios de Unión , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA