Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS One ; 17(11): e0277428, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36449530

RESUMEN

COVID-19 (Coronavirus disease 2019) hit Europe in January 2020. By March, Europe was the active centre of the pandemic. As a result, widespread "lockdown" measures were enforced across the various European countries, even if to a different extent. Such actions caused a dramatic reduction, especially in road traffic. This event can be considered the most significant experiment ever conducted in Europe to assess the impact of a massive switch-off of atmospheric pollutant sources. In this study, we focus on in situ concentration data of the main atmospheric pollutants measured in twelve European cities, characterized by different climatology, emission sources, and strengths. We propose a methodology for the fair comparison of the impact of lockdown measures considering the non-stationarity of meteorological conditions and emissions, which are progressively declining due to the adoption of stricter air quality measures. The analysis of these unmatched circumstances allowed us to estimate the impact of a nearly zero-emission urban transport scenario on air quality in 12 European cities. The clearest result, common to all the cities, is that a dramatic traffic reduction effectively reduces NO2 concentrations. In contrast, each city's PM and ozone concentrations can respond differently to the same type of emission reduction measure. From the policy point of view, these findings suggest that measures targeting urban traffic alone may not be the only effective option for improving air quality in cities.


Asunto(s)
Contaminación del Aire , COVID-19 , Contaminantes Ambientales , Humanos , Ciudades , COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles , Políticas
2.
Sci Total Environ ; 741: 140353, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32593894

RESUMEN

During the months of March and April 2020 we witnessed the largest-scale experiment in history in terms of air quality in cities. Any prediction of this experiment's results may be obvious to science, as it was totally expected, the air quality has improved substantially. Simply stated, it comes as no surprise. The lockdown has made it possible to quantify the limit of decrease in pollution in light of this drastic reduction in traffic, in Madrid and Barcelona showed a significant decrease of the order of 75%. In the case of Spain's two largest cities, the reductions of NO2 concentrations were 62% and 50%, respectively. Hourly measurements were obtained from 24 and 9 air quality stations from the monitoring networks during the month of March 2020. These results allow us to see the limits that can be achieved by implementing low emission zones (LEZ), as well as the amount of contamination that must be eliminated, which in the cases of Madrid and Barcelona, represent 55%. This value defines the levels of effort and scope of actions to be taken in order to ensure that both cities achieve a clean and healthy atmosphere in terms of NO2.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Infecciones por Coronavirus , Pandemias , Neumonía Viral , Betacoronavirus , COVID-19 , Ciudades , Monitoreo del Ambiente , Humanos , Dióxido de Nitrógeno/análisis , Material Particulado/análisis , SARS-CoV-2 , España
3.
Air Qual Atmos Health ; 10(8): 939-954, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29142612

RESUMEN

Air quality trends and patterns in the coastal city of Santa Cruz de Tenerife (Canary Islands, Spain) for the period 2011-2015 were analyzed. The orographic and meteorological characteristics, the proximity to the African continent, and the influence of the Azores anticyclone in combination with the anthropogenic (oil refinery, road/maritime traffic) and natural emissions create specific dispersion conditions. SO2, NO2, PM10, PM2.5, and O3 pollutants were assessed. The refinery was the primary source of SO2; EU hourly and daily average limit values were exceeded during 2011 and alert thresholds were reached in 2011 and 2012. WHO daily mean guideline was occasionally exceeded. Annual averages in the three stations that registered the highest concentrations in 2011 and 2012 were between 9.3 and 20.4 µg/m3. The spatial analysis of SO2 concentrations with respect to prevailing winds corroborates a clear influence of the refinery to the SO2 levels. In 2014 and 2015, the refinery did not operate and the concentrations fell abruptly to background levels of 2.5-7.1 µg/m3 far below from WHO AQG. NO2 EU limit values, as well as WHO AQG for the period 2011-2015, were not exceeded. The progressive dieselization of the vehicle fleet caused an increment on NO2 annual mean concentrations (from 2011 to 2015) measured at two stations close to busy roads 25 to 31 µg/m3 (+21%) and 27 to 35 µg/m3 (+29%). NO x daily and weekly cycles (working days and weekends) were characterized. An anti-correlation was found between NO x and O3, showing that O3 is titrated by locally emitted NO. Higher O3 concentrations were reported because less NO x emitted during the weekends showing a clear weekend effect. Saharan dust intrusions have a significant impact on PM levels. After subtracting natural sources contribution, none of the stations reached the EU maximum 35 yearly exceedances of daily means despite seldom exceedances at some stations. None of the stations exceeded the annual mean EU limit values; however, many stations exceeded the annual mean WHO AQG. Observed PM10 annual average concentrations in all the stations fluctuated between 10.1 and 35.3 µg/m3, where background concentrations were 6.5-24.4 µg/m3 and natural contributions: 4.2-9.1 µg/m3. No PM10 temporal trends were identified during the period except for an effect of washout due to the rain: concentrations were lower in 2013 and 2014 (the most rainy years of the period). None of the stations reached the PM2.5 annual mean EU 2015 limit value. However, almost all the stations registered daily mean WHO AQG exceedances. During 2015, PM2.5 concentrations were higher than the previous years (2015, 8.8-12.3 µg/m3; 2011-2014, 3.7-9.6 µg/m3). O3 complied with EU target values; stricter WHO AQG were sometimes exceeded in all the stations for the whole time period.

4.
Environ Int ; 99: 170-176, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27871798

RESUMEN

BACKGROUND: Air pollution exposure has been associated with an increase in mortality rates, but few studies have focused on life expectancy, and most studies had restricted spatial coverage. A limited body of evidence is also suggestive for a beneficial association between residential exposure to greenness and mortality, but the evidence for such an association with life expectancy is still very scarce. OBJECTIVE: To investigate the association of exposure to air pollution and greenness with mortality and life expectancy in Spain. METHODS: Mortality data from 2148 small areas (average population of 20,750 inhabitants, and median population of 7672 inhabitants) covering Spain for years 2009-2013 were obtained. Average annual levels of PM10, PM2.5, NO2 and O3 were derived from an air quality forecasting system at 4×4km resolution. The normalized difference vegetation index (NDVI) was used to assess greenness in each small area. Air pollution and greenness were linked to standardized mortality rates (SMRs) using Poisson regression and to life expectancy using linear regression. The models were adjusted for socioeconomic status and lung cancer mortality rates (as a proxy for smoking), and accounted for spatial autocorrelation. RESULTS: The increase of 5µg/m3 in PM10, NO2 and O3 or of 2µg/m3 in PM2.5 concentration resulted in a loss of life in years of 0.90 (95% credibility interval CI: 0.83, 0.98), 0.13 (95% CI: 0.09, 0.17), 0.20years (95% CI: 0.16, 0.24) and 0.64 (0.59, 0.70), respectively. Similar associations were found in the SMR analysis, with stronger associations for PM2.5 and PM10, which were associated with an increased mortality risk of 3.7% (95% CI: 3.5%, 4.0%) and 5.7% (95% CI: 5.4%, 6.1%). For greenness, a protective effect on mortality and longer life expectancy was only found in areas with lower socioeconomic status. CONCLUSIONS: Air pollution concentrations were associated to important reductions in life expectancy. The reduction of air pollution should be a priority for public health.


Asunto(s)
Contaminación del Aire/análisis , Ambiente , Esperanza de Vida , Mortalidad , Femenino , Humanos , Masculino , Material Particulado/análisis , Población Rural , Análisis de Área Pequeña , España/epidemiología , Población Urbana
5.
Sci Total Environ ; 543(Pt A): 670-682, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26615485

RESUMEN

Despite the ~30% emission decrease of the main tropospheric ozone (O3) precursors in Spain in the 2001-2012 period, the O3 concentration in summer still exceeds the target value for the protection of the human health of the Air Quality Directive (2008/50/EC). On-road transport is the main anthropogenic contributor to O3 precursor's emissions in Madrid and Barcelona metropolitan areas (65%/59% of NOx, 40%/33% of NMVOC, and 67%/85% of CO emissions) but this contribution to O3 formation is not well understood. The present work aims at increasing the understanding on the role of on-road transport emissions from main Spanish urban areas in O3 dynamics over Spain under typical circulation types. For that purpose, the Integrated Source Apportionment Method is used within the CALIOPE modelling system (WRF/CMAQ/HERMES/BSC-DREAM8b). The results indicate that the daily maximum O3 concentration attributed to the on-road transport emissions from Madrid (O3T-MAD) and Barcelona metropolitan areas (O3T-BCN) contribute up to 24% and 8% to total O3 concentration, respectively, within an area of influence of 200 km. The contribution of O3T-MAD and O3T-BCN is particularly significant (up to 80-100 µg m(-3) in an hour) to the O3 concentration peak during the central hours of the day in the high O3 concentration season (April-September). The maximum O3T-MAD concentration is calculated within the metropolitan area of Madrid but the plume, channelled by the Tajo and the Henares valleys, affects large areas of the Iberian Peninsula. The O3T-BCN plume is more driven by sea-land and mountain-valley breezes than by the synoptic advection and its maximum concentration is usually registered over the Mediterranean Sea. The O3 concentration transported long-range to the Iberian Peninsula is significant in the area of influence of Madrid and Barcelona, being maxima under cold (70-96%) and minima in warm circulation types (35-70%).

6.
Sci Total Environ ; 541: 701-713, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26433330

RESUMEN

Emissions of SO2 and NO2 from coal-fired power plants are a significant source of air pollution. In order to typify the power plants' plumes dynamics and quantify their contribution to air quality, a comprehensive characterisation of seven coal-fired power plant plumes has been performed under six representative circulation types (CTs) identified by means of a synoptic classification over the Iberian Peninsula. The emission and the transport of SO2 and NO2 have been simulated with the CALIOPE air quality forecasting system that couples the HERMES emission model for Spain and WRF and CMAQ models. For the facilities located in continental and Atlantic areas (As Pontes, Aboño, and Compostilla) the synoptic advection controls pollutant transport, however for power plants located along the Mediterranean or over complex-terrains (Guardo, Andorra, Carboneras, and Los Barrios), plume dynamics are driven by a combination of synoptic and mesoscale mountain-valley and sea-land breezes. The contribution of power plants to surface concentration occurs mainly close to the source (<20 km) related to a fumigation process when the emission injection takes place within the planetary boundary layer reaching up to 55 µg SO2 m(-3) and 32 µg NO2 m(-3). However, the SO2 and NO2 plumes can reach long distances (>250 km from the sources) especially for CTs characterised by Atlantic advection.

7.
PLoS One ; 9(10): e110762, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25333783

RESUMEN

The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer.


Asunto(s)
Clorofila/metabolismo , Polvo , Biología Marina , Fitoplancton/crecimiento & desarrollo , África del Norte , Clima Desértico , Mar Mediterráneo
8.
Environ Sci Technol ; 48(8): 4452-9, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24621302

RESUMEN

In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Geografía , Modelos Teóricos , Estadística como Asunto , Nitratos/análisis , Análisis de Regresión , Reproducibilidad de los Resultados , España
9.
Environ Health Perspect ; 122(7): 679-86, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24633049

RESUMEN

BACKGROUND: Epidemics of meningococcal meningitis are concentrated in sub-Saharan Africa during the dry season, a period when the region is affected by the Harmattan, a dry and dusty northeasterly trade wind blowing from the Sahara into the Gulf of Guinea. OBJECTIVES: We examined the potential of climate-based statistical forecasting models to predict seasonal incidence of meningitis in Niger at both the national and district levels. DATA AND METHODS: We used time series of meningitis incidence from 1986 through 2006 for 38 districts in Niger. We tested models based on data that would be readily available in an operational framework, such as climate and dust, population, and the incidence of early cases before the onset of the meningitis season in January-May. Incidence was used as a proxy for immunological state, susceptibility, and carriage in the population. We compared a range of negative binomial generalized linear models fitted to the meningitis data. RESULTS: At the national level, a model using early incidence in December and averaged November-December zonal wind provided the best fit (pseudo-R2 = 0.57), with zonal wind having the greatest impact. A model with surface dust concentration as a predictive variable performed indistinguishably well. At the district level, the best spatiotemporal model included zonal wind, dust concentration, early incidence in December, and population density (pseudo-R2 = 0.41). CONCLUSIONS: We showed that wind and dust information and incidence in the early dry season predict part of the year-to-year variability of the seasonal incidence of meningitis at both national and district levels in Niger. Models of this form could provide an early-season alert that wind, dust, and other conditions are potentially conducive to an epidemic.


Asunto(s)
Aerosoles/análisis , Clima , Polvo/análisis , Meningitis Meningocócica/epidemiología , Predicción , Humanos , Incidencia , Modelos Lineales , Meningitis Meningocócica/microbiología , Modelos Estadísticos , Niger/epidemiología , Estaciones del Año , Suelo , Viento
10.
Sci Total Environ ; 473-474: 576-88, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24394367

RESUMEN

The present study aims to analyse the atmospheric dynamics of the Santa Cruz de Tenerife region (Tenerife, Canary Islands). This area is defined by the presence of anthropogenic emissions (from a refinery, a port and road traffic) and by very specific meteorological and orographic conditions-it is a coastal area with a complex topography in which there is an interaction of regional atmospheric dynamics and a low thermal inversion layer. These factors lead to specific atmospheric pollution episodes, particularly in relation to SO2 and PM10. We applied a methodology to study these dynamics based on two complementary approaches: 1) the analysis of the observations from the air quality network stations and 2) simulation of atmospheric dynamics using the WRF-ARW/HERMESv2/CMAQ/BSC-DREAM8b and WRF-ARW/HYSPLIT modelling systems with a high spatial resolution (1×1 km(2)). The results of our study show that the refinery plume plays an important role in the maximum SO2 observed levels. The area of maximum impact of the refinery is confined to a radius of 3 km around this installation. A cluster analysis performed for the period: 1998-2011 identified six synoptic situations as predominant in the area. The episodes of air pollution by SO2 occur mainly in those with more limited dispersive conditions, such as the northeastern recirculation, the northwestern recirculation and the western advection, which represent 33.70%, 11.23% and 18.63% of the meteorological situations affecting the study area in the year 2011, respectively. In the case of particulate matter, Saharan dust intrusions result in episodes with high levels of PM10 that may exceed the daily limit value in all measurement station; these episodes occur when the synoptic situation is from the east (3.29% of the situations during the year 2011).


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Monitoreo del Ambiente/métodos , Modelos Químicos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , España , Dióxido de Azufre/análisis
11.
Sci Total Environ ; 407(10): 3269-81, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19264350

RESUMEN

On-road traffic is the major contributor to pollutant emissions in urban areas. Nowadays different emission abatement strategies are being tested in order to improve urban air quality (e.g. the European Commission currently promotes the use of natural gas as an alternative fuel). Several feasible scenarios regarding the introduction of natural gas vehicles (NGV) are studied in the two main cities of Spain (Barcelona and Madrid) by using the HERMES emission model. The most suitable emission factors to NGV are selected among those available in the literature. The account of emissions in the base case scenario estimated for a typical summertime polluted day of the year 2004 reflects that in Barcelona 86% of primary pollutants come from on-road traffic compared to 93% in Madrid, because of the heavier industrial activity in the former. The introduction of NGV in urban zones would have a positive effect on emissions, whose extent largely depends on the substituted fleets and the conurbation characteristics. Maximum reductions in NO(x) emissions in Madrid are attributed to the substitution of 10% of the oldest diesel and petrol cars, while in Barcelona the change of 50% of the oldest commercial light vehicles becomes more effective. PM(2.5) and SO(2) emissions can be significatively reduced with the introduction of NGV instead of the oldest commercial light vehicles. The substitution of conventional fuels by natural gas must reach around 4% to achieve significative reductions in traffic emissions (larger than 5%). This work focuses on air quality issues, therefore GHG emissions are not included, nevertheless this kind of associated impact has to be considered by the decision makers. Assessing the efficacy of environmental improvement strategies entails a realistic design of emission scenarios and their evaluation. The detailed emission account provides a fundamental basis for the air quality modelling and its comparison among scenarios.


Asunto(s)
Contaminantes Atmosféricos/análisis , Ciudades , Monitoreo del Ambiente/métodos , Combustibles Fósiles , Vehículos a Motor , España , Emisiones de Vehículos
12.
Sci Total Environ ; 407(2): 776-90, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19022477

RESUMEN

The mitigation of the effects of on-road traffic emissions on urban air pollution is currently an environmental challenge. Air quality modeling has become a powerful tool to design environment-related strategies. A wide range of options is being proposed; such as the introduction of natural gas vehicles (NGV), biofuels or hydrogen vehicles. The impacts on air quality of introducing specific NGV fleets in Barcelona and Madrid (Spain) are assessed by means of the WRF-ARW/HERMES/CMAQ modeling system with high spatial-temporal resolution (1 km(2), 1 h). Seven emissions scenarios are defined taking into account the year 2004 vehicle fleet composition of the study areas and groups of vehicles susceptible of change under a realistic perspective. O(3) average concentration rises up to 1.3% in Barcelona and up to 2.5% in Madrid when introducing the emissions scenarios, due to the NO(x) reduction in VOC-controlled areas. Nevertheless, NO(2), PM10 and SO(2) average concentrations decrease, up to 6.1%, 1.5% and 6.6% in Barcelona and up to 20.6%, 8.7% and 14.9% in Madrid, respectively. Concerning SO(2) and PM10 reductions the most effective single scenario is the introduction of 50% of NGV instead of the oldest commercial vehicles; it also reduces NO(2) concentrations in Barcelona, however in Madrid lower levels are attained when substituting 10% of the private cars. This work introduces the WRF-ARW/HERMES/CMAQ modeling system as a useful management tool and proves that the air quality improvement plans must be designed considering the local characteristics.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Combustibles Fósiles , Material Particulado/análisis , Emisiones de Vehículos/análisis , Ciudades , Óxidos de Nitrógeno , Ozono , Tamaño de la Partícula , España , Dióxido de Azufre , Compuestos Orgánicos Volátiles
13.
Sci Total Environ ; 390(2-3): 323-40, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18045658

RESUMEN

The high levels of air pollutants over the North-Western Mediterranean (NWM) exceed the thresholds set in current air quality regulations. They demand a detailed diagnosis of those areas where the exceedances of thresholds related to human health are found. In this sense, there is a need for modelling studies for the specific area of the NWM that take into account the annual cycle to address the diagnosis of air pollution. A new approach to the modelling of air quality in the NWM has been adopted by combining the WRF-EMICAT-CMAQ-DREAM modelling system to diagnose the current status of the levels of photochemical air pollution (focusing on ozone, O(3); nitrogen dioxide, NO(2); carbon monoxide, CO; and particulate matter, PM10) in the area during an annual cycle (year 2004). The complexity of the area of study requires the application of high spatial and temporal resolution (2 km and 1 h). The annual simulations need to cover the complex different meteorological situations and types of episodes of air pollution in the area of study. The outputs of the modelling system are evaluated against observations from 52 meteorological and 59 air quality stations belonging to the Environmental Department of the Catalonia Government (Spain), which involve a dense and accurate spatial distribution of stations in the territory (32,215 km(2)). The results indicate a good behaviour of the model in both coastal and inland areas of the NWM, with a slight trend to the overestimation of tropospheric O(3) concentrations and the underestimation of other photochemical pollutants (NO(2), CO and PM10). The modelling diagnosis indicates that the main air quality-related problems in the NWM are the exceedances of the 1-hr O(3) information threshold set in the Directive 2002/3/EC (180 microg m(-3)) as a consequence of the transport of O(3) precursors downwind the Barcelona Greater Area (BGA); and the exceedances of the annual value for the protection of human health for NO(2) and PM10 (40 microg m(-3), Directive 1999/30/EC), both in the BGA, as a consequence of the high traffic-related emissions.


Asunto(s)
Contaminantes Atmosféricos , Modelos Teóricos , Movimientos del Aire , Monóxido de Carbono , Equipos de Almacenamiento de Computador , Conceptos Meteorológicos , Dióxido de Nitrógeno , Ozono , Material Particulado , España
15.
J Air Waste Manag Assoc ; 55(8): 1085-99, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16187579

RESUMEN

The location of the northeastern Iberian Peninsula (NEIP) in the northwestern Mediterranean basin, the presence of the Pyrenees mountain range (with altitudes > 3000 m), and the influence of the Mediterranean Sea and the large valley canalization of Ebro river induce an extremely complicated structure for the dispersion of photochemical pollutants. Air pollution studies in very complex terrains such as the NEIP require high-resolution modeling for resolving the very complex dynamics of flows. To deal with the influence of larger-scale transport, however, high-resolution models have to be nested in larger models to generate appropriate initial and boundary conditions for the finer resolution domains. This article shows the results obtained through the utilization of the MM5-EMICAT2000-CMAQ multiscale-nested air quality model relating the sensitivity regimes for ozone (O3)-nitrogen oxides (NOx)-volatile organic compounds (VOCs) in an area of high geographical complexity, like the industrial area of Tarragona, located in the NEIP. The model was applied with fine temporal (one-hour) and spatial resolution (cells of 24 km, 2 km, and 1 km) to represent the chemistry and transport of tropospheric O3 and other photochemical species with respect to different hypothetical scenarios of emission controls and to quantify the influence of different emission sources in the area. Results indicate that O3 chemistry in the industrial domain of Tarragona is strongly sensitive to VOCs; the higher percentages of reduction for ground-level O3 are achieved when reducing by 25% the emissions of industrial VOCs. On the contrary, reductions in the industrial emissions of NOx contribute to a strong increase in hourly peak levels of O3. At the same time, the contribution of on-road traffic and biogenic emissions to ground-level O3 concentrations in the area is negligible with respect to the pervasive weight of industrial sources. This analysis provides an assessment of the effectiveness of different policies for the control of emission of precursors by comparing the modeled results for different scenarios.


Asunto(s)
Contaminantes Atmosféricos/análisis , Modelos Teóricos , Oxidantes Fotoquímicos/análisis , Ozono/análisis , Monóxido de Carbono/análisis , Monitoreo del Ambiente , Industrias , Óxidos de Nitrógeno/análisis , Compuestos Orgánicos/análisis , España , Dióxido de Azufre/análisis , Volatilización , Viento
16.
J Air Waste Manag Assoc ; 53(3): 347-59, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12661693

RESUMEN

Numerical simulations with photochemical transport models were independently performed for two domains situated in the Iberian Peninsula covering the Lisbon and Barcelona airsheds. Although the days chosen for simulation of the two cities are not the same, the synoptic situations in both cases, known as typical summertime situations, were similar, which allowed the development of typical mesoscale circulations, such as sea breezes and mountain and valley winds dominated by the Azores anticyclone. Emission inventories for the two areas were developed. The O3 concentrations recorded in both cities have a similar level. Nevertheless, O(x) values in Barcelona are higher than in Lisbon, which may, at a first glance, indicate an apparently more oxidant atmosphere in Barcelona. Photochemical modeling for the two cities has shown that the behavior of the circulatory patterns in both urban areas is rather different, which mainly has to do with the different strengths of the sea breeze and the topography, inducing an important offshore vertical layered dimension of pollutant transport in Barcelona versus an important inland horizontal transport in Lisbon.


Asunto(s)
Contaminantes Atmosféricos/análisis , Modelos Teóricos , Oxidantes Fotoquímicos/análisis , Ozono/análisis , Movimientos del Aire , Ciudades , Monitoreo del Ambiente , Conceptos Meteorológicos , Portugal , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA