Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Environ Sci Technol ; 58(3): 1452-1461, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38214086

RESUMEN

Cationic surfactants are used in many industrial processes and in consumer products with concurrent release into the aquatic environment, where they may accumulate in aquatic organisms to regulatoryly relevant thresholds. Here, we aimed to better understand the bioconcentration behavior of three selected cationic surfactants, namely N,N-dimethyldecylamine (T10), N-methyldodecylamine (S12), and N,N,N-trimethyltetradecylammonium cation (Q14), in the cells of fish liver (RTL-W1) and gill (RTgill-W1) cell lines. We conducted full mass balances for bioconcentration tests with the cell cultures, in which the medium, the cell surface, the cells themselves, and the plastic compartment were sampled and quantified for each surfactant by HPLC MS/MS. Accumulation in/to cells correlated with the surfactants' alkyl chain lengths and their membrane lipid-water partitioning coefficient, DMLW. Cell-derived bioconcentration factors (BCF) of T10 and S12 were within a factor of 3.5 to in vivo BCF obtained from the literature, while the cell-derived BCF values for Q14 were >100 times higher than the in vivo BCF. From our experiments, rainbow trout cell lines appear as a suitable conservative in vitro screening method for bioconcentration assessment of cationic surfactants and are promising for further testing.


Asunto(s)
Oncorhynchus mykiss , Contaminantes Químicos del Agua , Animales , Bioacumulación , Espectrometría de Masas en Tándem , Tensoactivos/metabolismo , Oncorhynchus mykiss/metabolismo , Línea Celular , Contaminantes Químicos del Agua/metabolismo
3.
Environ Int ; 174: 107798, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36965398

RESUMEN

Permanent rainbow trout (Oncorhynchus mykiss) cell lines represent potential in vitro alternatives to experiments with fish. We here developed a method to assess the bioaccumulation potential of anionic organic compounds in fish, using the rainbow trout liver-derived RTL-W1 cell line. Based on the availability of high quality in vivo bioconcentration (BCF) and biomagnification (BMF) data and the substances' charge state at physiological pH, four anionic compounds were selected: pentachlorophenol (PCP), diclofenac (DCF), tecloftalam (TT) and benzotriazol-tert-butyl-hydroxyl-phenyl propanoic acid (BHPP). The fish cell line acute toxicity assay (OECD TG249) was used to derive effective concentrations 50 % and non-toxic exposure concentrations to determine exposure concentrations for bioaccumulation experiments. Bioaccumulation experiments were performed over 48 h with a total of six time points, at which cell, medium and plastic fractions were sampled and measured using high resolution tandem mass spectrometry after online solid phase extraction. Observed cell internal concentrations were over-predicted by KOW-derived predictions while pH-dependent octanol-water partitioning (DOW) and membrane lipid-water partitioning (DMLW) gave better predictions of cell internal concentrations. Measured medium and cell internal concentrations at steady state were used to calculate RTL-W1-based BCF, which were compared to DOW- or DMLW-based model approaches and in vivo data. With the exception of PCP, the cell-derived BCF best compared to DOW-based model predictions, which were higher than predictions based on DMLW. All methods predicted the in vivo BCF for diclofenac well. For PCP, the cell-derived BCF was lowest although all BCF predictions underestimated the in vivo BCF by ≥ 1 order of magnitude. The RTL-W1 cells, and all other prediction methods, largely overestimated in vivo BMF, which were available for PCP, TT and BHPP. We conclude that the RTL-W1 cell line can supplement BCF predictions for anionic compounds. For BMF estimations, however, in vitro-in vivo extrapolations need adaptation or a multiple cell line approach.


Asunto(s)
Oncorhynchus mykiss , Contaminantes Químicos del Agua , Animales , Oncorhynchus mykiss/metabolismo , Bioacumulación , Diclofenaco/toxicidad , Hígado/metabolismo , Línea Celular , Compuestos Orgánicos/análisis , Agua , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Process Impacts ; 21(11): 1875-1886, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31549993

RESUMEN

Adults are mainly exposed to per- and polyfluoroalkyl substances (PFASs) via ingestion of food, inhalation of air and ingestion of dust, whereas for children the exposure to PFASs is largely unknown. This study aimed to reconstruct the serum concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) in children after infancy up to 10.5 years of age and to test if dietary intake is the major exposure pathway for children to PFOA, PFOS and PFHxS after infancy. For this work, a dataset from a Finnish child cohort study was available, which comprised serum concentrations of the studied perfluoroalkyl acids (PFAAs) and PFAS concentration measurements in dust and air samples from the children's bedrooms. The calculated PFAA intakes were used in a pharmacokinetic model to reconstruct the PFAA serum concentrations from 1 to 10.5 years of age. The calculated PFOA and PFOS intakes were close to current regulatory intake thresholds and diet was the major exposure medium for the 10.5 year-olds. The one-compartment PK model reconstructed median PFOA and PFOS serum concentrations well compared to corresponding measured median serum concentrations, while the modelled PFHxS serum concentrations showed a constant underestimation. The results imply that children's exposure to PFOA and PFOS after breastfeeding and with increasing age resembles the exposure of adults. Further, the children in the Finnish cohort experienced a rather constant exposure to PFOA and PFOS between 1 and 10.5 years of age. The PFHxS exposure sources and respective pharmacokinetic parameter estimations need further investigation.


Asunto(s)
Ácidos Alcanesulfónicos/sangre , Caprilatos/sangre , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/sangre , Fluorocarburos/sangre , Ácidos Sulfónicos/sangre , Adulto , Niño , Preescolar , Estudios de Cohortes , Exposición Dietética/análisis , Polvo/análisis , Femenino , Finlandia , Humanos , Lactante , Exposición por Inhalación/análisis
5.
Sci Total Environ ; 571: 826-33, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27436773

RESUMEN

Bioactivity screening studies often face sample amount limitation with respect to the need for reliable, reproducible and quantitative results. Therefore approaches that minimize sample use are needed. Low-volume exposure and chemical dilution procedures were applied in an androgen receptor reporter gene human cell line assay to evaluate environmental contaminants and androgen receptor modulators, which were the agonist 5α-dihydrotestosterone (DHT); and the antagonists flutamide, bisphenol A, 1-hydroxypyrene and triclosan. Cells were exposed in around 1/3 of the medium volume recommended by the protocol (70µL/well). Further, chemical losses during pipetting steps were minimized by applying a low-volume method for compound dilution in medium (250µL for triplicate wells) inside microvolume glass inserts. Simultaneously, compounds were evaluated following conventional procedures (200µL/well, dilution in 24-well plates) for comparison of results. Low-volume exposure tests produced DHT EC50 (3.4-3.7×10(-10)M) and flutamide IC50 (2.2-3.3×10(-7)M) values very similar to those from regular assays (3.1-4.2×10(-10) and 2.1-3.3×10(-7)M respectively) and previous studies. Also, results were within assay acceptance criteria, supporting the relevance of the downscaling setup for agonistic and antagonistic tests. The low-volume exposure was also successful in determining IC50 values for 1-hydroxypyrene (2.1-2.8×10(-6)M), bisphenol A (2.6-3.3×10(-6)M), and triclosan (1.2-1.9×10(-6)M) in agreement with values obtained through high-volume exposure (2.3-2.8, 2.5-3.4 and 1.0-1.3×10(-6)M respectively). Finally, experiments following both low-volume dosing and exposure produced flutamide and triclosan IC50 values similar to those from regular tests. The low-volume experimental procedures provide a simple and effective solution for studies that need to minimize bioassay sample use while maintaining method reliability. The downscaling methods can be applied for the evaluation of samples, fractions or chemicals which require minimal losses during the steps of pipetting, transference to medium and exposure in bioassays.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Andrógenos/farmacología , Genes Reporteros/efectos de los fármacos , Receptores Androgénicos/metabolismo , Línea Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA