Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5943, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741816

RESUMEN

Microbial infections early in life are challenging for the unexperienced immune system. The SARS-CoV-2 pandemic again has highlighted that neonatal, infant, child, and adult T-helper(Th)-cells respond differently to infections, and requires further understanding. This study investigates anti-bacterial T-cell responses against Staphylococcus aureus aureus, Staphylococcus epidermidis and Bifidobacterium longum infantis in early stages of life and adults and shows age and pathogen-dependent mechanisms. Beside activation-induced clustering, T-cells stimulated with Staphylococci become Th1-type cells; however, this differentiation is mitigated in Bifidobacterium-stimulated T-cells. Strikingly, prestimulation of T-cells with Bifidobacterium suppresses the activation of Staphylococcus-specific T-helper cells in a cell-cell dependent manner by inducing FoxP3+CD4+ T-cells, increasing IL-10 and galectin-1 secretion and showing a CTLA-4-dependent inhibitory capacity. Furthermore Bifidobacterium dampens Th responses of severely ill COVID-19 patients likely contributing to resolution of harmful overreactions of the immune system. Targeted, age-specific interventions may enhance infection defence, and specific immune features may have potential cross-age utilization.


Asunto(s)
Antiinfecciosos , COVID-19 , Recién Nacido , Niño , Adulto , Humanos , Lactante , Bifidobacterium , SARS-CoV-2 , Linfocitos T Colaboradores-Inductores , Staphylococcus , Citocinas
2.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982735

RESUMEN

Newborns are highly susceptible to infections; however, the underlying mechanisms that regulate the anti-microbial T-helper cells shortly after birth remain incompletely understood. To address neonatal antigen-specific human T-cell responses against bacteria, Staphylococcus aureus (S. aureus) was used as a model pathogen and comparatively analyzed in terms of the polyclonal staphylococcal enterotoxin B (SEB) superantigen responses. Here, we report that neonatal CD4 T-cells perform activation-induced events upon S. aureus/APC-encounter including the expression of CD40L and PD-1, as well as the production of Th1 cytokines, concomitant to T-cell proliferation. The application of a multiple regression analysis revealed that the proliferation of neonatal T-helper cells was determined by sex, IL-2 receptor expression and the impact of the PD-1/PD-L1 blockade. Indeed, the treatment of S. aureus-activated neonatal T-helper cells with PD-1 and PD-L1 blocking antibodies revealed the specific regulation of the immediate neonatal T-cell responses with respect to the proliferation and frequencies of IFNγ producers, which resembled in part the response of adults' memory T-cells. Intriguingly, the generation of multifunctional T-helper cells was regulated by the PD-1/PD-L1 axis exclusively in the neonatal CD4 T-cell lineage. Together, albeit missing memory T-cells in neonates, their unexperienced CD4 T-cells are well adapted to mount immediate and strong anti-bacterial responses that are tightly controlled by the PD-1/PD-L1 axis, thereby resembling the regulation of recalled memory T-cells of adults.


Asunto(s)
Linfocitos T CD4-Positivos , Receptor de Muerte Celular Programada 1 , Adulto , Recién Nacido , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Staphylococcus aureus/metabolismo , Linfocitos T Colaboradores-Inductores , Antígenos/metabolismo
3.
Sci Rep ; 9(1): 11882, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31417174

RESUMEN

The literature suggests morphological alterations and molecular biological changes within the cellular milieu of human cells, exposed to microgravity (µg), as many cell types assemble to multicellular spheroids (MCS). In this study we investigated juvenile normal human dermal fibroblasts (NHDF) grown in simulated µg (s-µg) on a random positioning machine (RPM), aiming to study changes in cell morphology, cytoskeleton, extracellular matrix (ECM), focal adhesion and growth factors. On the RPM, NHDF formed an adherent monolayer and compact MCS. For the two cell populations we found a differential regulation of fibronectin, laminin, collagen-IV, aggrecan, osteopontin, TIMP-1, integrin-ß1, caveolin-1, E-cadherin, talin-1, vimentin, α-SM actin, TGF-ß1, IL-8, MCP-1, MMP-1, and MMP-14 both on the transcriptional and/or translational level. Immunofluorescence staining revealed only slight structural changes in cytoskeletal components. Flow cytometry showed various membrane-bound proteins with considerable variations. In silico analyses of the regulated proteins revealed an interaction network, contributing to MCS growth via signals mediated by integrin-ß1, E-cadherin, caveolin-1 and talin-1. In conclusion, s-µg-conditions induced changes in the cytoskeleton, ECM, focal adhesion and growth behavior of NHDF and we identified for the first time factors involved in fibroblast 3D-assembly. This new knowledge might be of importance in tissue engineering, wound healing and cancer metastasis.


Asunto(s)
Fibroblastos/citología , Fibroblastos/metabolismo , Ingravidez , Biomarcadores , Células Cultivadas , Citoesqueleto/metabolismo , Dermis/citología , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Humanos , Mapeo de Interacción de Proteínas , Simulación de Ingravidez
4.
Front Immunol ; 9: 744, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755453

RESUMEN

Dendritic cells (DCs) are major players for the induction of immune responses. Apart from plasmacytoid DCs (pDCs), human DCs can be categorized into two types of conventional DCs: CD141+ DCs (cDC1) and CD1c+ DCs (cDC2). Defining uniquely expressed surface markers on human immune cells is not only important for the identification of DC subpopulations but also a prerequisite for harnessing the DC subset-specific potential in immunomodulatory approaches, such as antibody-mediated antigen targeting. Although others identified CLEC9A as a specific endocytic receptor for CD141+ DCs, such a receptor for CD1c+ DCs has not been discovered, yet. By performing transcriptomic and flow cytometric analyses on human DC subpopulations from different lymphohematopoietic tissues, we identified CLEC10A (CD301, macrophage galactose-type C-type lectin) as a specific marker for human CD1c+ DCs. We further demonstrate that CLEC10A rapidly internalizes into human CD1c+ DCs upon binding of a monoclonal antibody directed against CLEC10A. The binding of a CLEC10A-specific bivalent ligand (the MUC-1 peptide glycosylated with N-acetylgalactosamine) is limited to CD1c+ DCs and enhances the cytokine secretion (namely TNFα, IL-8, and IL-10) induced by TLR 7/8 stimulation. Thus, CLEC10A represents not only a candidate to better define CD1c+ DCs-due to its high endocytic potential-CLEC10A also exhibits an interesting candidate receptor for future antigen-targeting approaches.


Asunto(s)
Antígenos CD1/inmunología , Células Dendríticas/inmunología , Glicoproteínas/inmunología , Lectinas Tipo C/inmunología , Adulto , Citocinas/inmunología , Humanos , Mucina-1/inmunología , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 8/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA