Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126429

RESUMEN

The high capacity of the skeletal muscle to regenerate is due to the presence of muscle stem cells (MuSCs, or satellite cells). The E3 ubiquitin ligase Parkin is a key regulator of mitophagy and is recruited to mitochondria during differentiation of mouse myoblast cell line. However, the function of mitophagy during regeneration has not been investigated in vivo. Here, we have utilized Parkin deficient (Parkin-/-) mice to investigate the role of Parkin in skeletal muscle regeneration. We found a persistent deficiency in skeletal muscle regeneration in Parkin-/- mice after cardiotoxin (CTX) injury with increased area of fibrosis and decreased cross-sectional area (CSA) of myofibres post-injury. There was also a significant modulation of MuSCs differentiation and mitophagic markers, with altered mitochondrial proteins during skeletal muscle regeneration in Parkin-/- mice. Our data suggest that Parkin-mediated mitophagy plays a key role in skeletal muscle regeneration and is necessary for MuSCs differentiation.


Asunto(s)
Diferenciación Celular , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Desarrollo de Músculos , Músculo Esquelético/patología , Regeneración , Ubiquitina-Proteína Ligasas/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Células Madre/citología
2.
Eur J Nutr ; 59(6): 2427-2437, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31494696

RESUMEN

PURPOSE: Nicotinamide riboside (NR) acts as a potent NAD+ precursor and improves mitochondrial oxidative capacity and mitochondrial biogenesis in several organisms. However, the effects of NR supplementation on aerobic performance remain unclear. Here, we evaluated the effects of NR supplementation on the muscle metabolism and aerobic capacity of sedentary and trained mice. METHODS: Male C57BL/6 J mice were supplemented with NR (400 mg/Kg/day) over 5 and 10 weeks. The training protocol consisted of 5 weeks of treadmill aerobic exercise, for 60 min a day, 5 days a week. Bioinformatic and physiological assays were combined with biochemical and molecular assays to evaluate the experimental groups. RESULTS: NR supplementation by itself did not change the aerobic performance, even though 5 weeks of NR supplementation increased NAD+ levels in the skeletal muscle. However, combining NR supplementation and aerobic training increased the aerobic performance compared to the trained group. This was accompanied by an increased protein content of NMNAT3, the rate-limiting enzyme for NAD + biosynthesis and mitochondrial proteins, including MTCO1 and ATP5a. Interestingly, the transcriptomic analysis using a large panel of isogenic strains of BXD mice confirmed that the Nmnat3 gene in the skeletal muscle is correlated with several mitochondrial markers and with different phenotypes related to physical exercise. Finally, NR supplementation during aerobic training markedly increased the amount of type I fibers in the skeletal muscle. CONCLUSION: Taken together, our results indicate that NR may be an interesting strategy to improve mitochondrial metabolism and aerobic capacity.


Asunto(s)
Aerobiosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , NAD/metabolismo , Niacinamida/análogos & derivados , Compuestos de Piridinio/metabolismo , Compuestos de Piridinio/farmacología , Animales , Respiración de la Célula/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacología
3.
Appl Physiol Nutr Metab ; 44(2): 216-220, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30001503

RESUMEN

We aimed to investigate the mechanisms underlying muscle growth after 12 weeks of resistance training performed with blood flow restriction (RT-BFR) and high-intensity resistance training (HRT) in older individuals. Participants were allocated into the following groups: HRT, RT-BFR, or a control group. High-throughput transcriptome sequencing was performed by the Illumina HiSeq 2500 platform. HRT and RT-BFR presented similar increases in the quadriceps femoris cross-sectional area, and few genes were differently expressed between interventions. The small differences in gene expression between interventions suggest that similar mechanisms may underpin training-induced muscle growth.


Asunto(s)
Envejecimiento/fisiología , Músculo Esquelético/metabolismo , Educación y Entrenamiento Físico , Flujo Sanguíneo Regional/fisiología , Entrenamiento de Fuerza , Transcriptoma/fisiología , Anciano , ADN/biosíntesis , ADN/genética , Dieta , Femenino , Regulación de la Expresión Génica/fisiología , Humanos , Pierna/anatomía & histología , Pierna/fisiología , Masculino , Persona de Mediana Edad , Músculo Esquelético/irrigación sanguínea , Músculo Cuádriceps/fisiología , ARN/biosíntesis , ARN/genética
4.
Br J Nutr ; 119(8): 896-909, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29644961

RESUMEN

Here we evaluated the effect of fermented milk supplemented with whey protein (approximately 80 % protein), probiotic (Bifidobacterium animalis subsp. lactis BB12) and pomegranate juice (Punica granatum L.) on the physical performance, intestinal motility and villi structure, inflammatory markers and intestinal microbiota of rats under high-intensity acute exercise. In all, twenty-four Wistar rats were separated into groups: control (Ctrl), supplemented (Supp), exercised (Exe) and exercised and supplemented (Exe+Supp). Rats in the Supp groups received fermented milk during 6 weeks by oral administration. At the end of the supplementation period, the Exe groups were submitted to high-intensity acute exercise on a treadmill. We found that intense acute exercise caused changes in the intestinal villi interspace, changes in the proportion of Lactobacillus species and an increase in Clostridium species, as well as a decrease in intestinal motility. Supplementation increased intestinal motility, and maintained the intestinal villi interspace and the natural microbiota proportions of the exercised rats. Physical performance was not improved by fermented milk supplementation. We conclude that the fermented milk containing whey protein, B. animalis (BB12) and pomegranate juice can re-establish intestinal microbiota and protect the animals from the undesirable effects of intense acute exercise.


Asunto(s)
Bifidobacterium animalis , Jugos de Frutas y Vegetales , Lythraceae , Probióticos , Proteína de Suero de Leche/administración & dosificación , Animales , Productos Lácteos Cultivados , Intestinos/efectos de los fármacos , Masculino , Leche , Condicionamiento Físico Animal , Ratas , Ratas Wistar , Proteína de Suero de Leche/farmacología
5.
J Cell Biochem ; 119(7): 5885-5892, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29575149

RESUMEN

The accumulation of fatty acids in the liver associated with obesity condition is also known as nonalcoholic fatty liver disease (NAFLD). The impaired fat oxidation in obesity condition leads to increased hepatic fat accumulation and increased metabolic syndrome risk. On the other hand, physical exercise has been demonstrated as a potent strategy in the prevention of NAFLD. Also, these beneficial effects of exercise occur through different mechanisms. Recently, the Cdc2-like kinase (CLK2) protein was associated with the suppression of fatty acid oxidation and hepatic ketogenesis. Thus, obese animals demonstrated elevated levels of hepatic CLK2 and decreased fat acid oxidation. Here, we explored the effects of chronic physical exercise in the hepatic metabolism of obese mice. Swiss mice were distributed in Lean, Obese (fed with high-fat diet during 16 weeks) and Trained Obese group (fed with high-fat diet during 16 weeks and exercised (at 60% exhaustion velocity during 1 h/5 days/week) during 8 weeks. In our results, the obese animals showed insulin resistance, increased hepatic CLK2 content and increased hepatic fat accumulation compared to the Lean group. Otherwise, the chronic physical exercise improved insulin resistance state, prevented the increased CLK2 in the liver and attenuated hepatic fat accumulation. In summary, these data reveal a new protein involved in the prevention of hepatic fat accumulation after chronic physical exercise. More studies can evidence the negative role of CLK2 in the control of liver metabolism, contributing to the improvement of insulin resistance, obesity, and type 2 diabetes.


Asunto(s)
Resistencia a la Insulina , Lipogénesis , Hígado/enzimología , Obesidad/terapia , Condicionamiento Físico Animal , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Delgadez/fisiopatología , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/enzimología , Obesidad/etiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética
6.
J Cell Physiol ; 233(6): 4791-4800, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29219181

RESUMEN

The effects of physical exercise on insulin signaling and glycemic homeostasis are not yet fully understood. Recent findings elucidated the positive role of Rho-kinase (Rock) in increasing the glucose uptake through insulin receptor substrate-1 (IRS1) phosphorylation in the skeletal muscle. Here, we explored the effects of short-term exercise on Rock activity and insulin signaling. Fischer 344 rats (3 months old) were subjected to a short-term swimming exercise for 2 hr per day for 5 days, with an overload corresponding to 1.5% of body weight. As expected, the exercised group had a reduced glycemia and increased insulin sensitivity. The contents of Rock1, Rock2, and Rock activity were improved in the skeletal muscle of the exercised rats. The contents of RhoA and RhoGEF, which are proteins involved in the Rock metabolism, were also increased in the skeletal muscle after exercise. These changes in the protein contents were accompanied by an increase in the insulin signaling pathway (pIRS1/pPDK/pAkt/pGSK3ß/pAS160/GLUT4), Rock activity, and IRS1 phosphorylation at the 632/635 serine residues. On the other hand, when Rock was inhibited with the Y-27632, the insulin sensitivity in response to exercise was impaired. Based on these findings, we conclude that the short-term exercise increased both insulin sensitivity and glucose tolerance, through the increased Rock activity and pIRS1 (serine 632/635) mediated by Rock, in the skeletal muscle of Fischer 344 rats. These data represent an exercise-mediated novel mechanism, suggesting an essential role of Rock activity in the insulin signaling and glucose homeostasis improvement.


Asunto(s)
Insulina/metabolismo , Contracción Muscular , Músculo Esquelético/enzimología , Condicionamiento Físico Animal , Esfuerzo Físico , Quinasas Asociadas a rho/metabolismo , Animales , Glucemia/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina , Masculino , Fosforilación , Ratas Endogámicas F344 , Transducción de Señal , Natación , Factores de Tiempo
8.
Cell Tissue Res ; 369(2): 381-394, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28436000

RESUMEN

Our aim is to gain insight into the mechanisms underlying the anti-atrophic effects of leucine, namely, the way that this amino acid can restrain the up-regulation of MuRF1 and Mafbx/Atrogin-1 in muscle atrophy. Male rats received dietary leucine supplementation for 1-3 days, during which time their hind limbs were immobilized. Our results showed that leucine inhibited Forkhead Box O3 (FoxO3a) translocation to cell nuclei. In addition, leucine was able to reverse the expected reduction of FoXO3a ubiquitination caused by immobilization. Unexpectedly, leucine promoted these effects independently of the Class I PI3K/Akt pathway. Vacuolar protein sorting 34 (VPS34; a Class III PI3K) was strongly localized in nuclei after immobilization and leucine supplementation was able to prevent this effect. In experiments on cultured primary myotubes, dexamethasone led to the localization of VPS34 in the nucleus. In addition, the pharmacological inhibition of VPS34 blocked VPS34 nuclear localization and impaired the protective effect of leucine upon myotube trophicity. Finally, the pharmacological inhibition of VPS34 in primary myotubes prevented the protective effects of leucine upon MuRF1 and Mafbx/Atrogin-1 gene expression. Autophagy-related target genes were not responsive to leucine. Thus, we demonstrate that the anti-atrophic effect of leucine is dependent upon FoxO3a suppression and VPS34 activity.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteína Forkhead Box O3/metabolismo , Leucina/farmacología , Músculo Esquelético/patología , Atrofia Muscular/patología , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Dexametasona/farmacología , Masculino , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Ubiquitinación
9.
J Biol Chem ; 290(36): 22061-75, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26183775

RESUMEN

Transfer of cardiac progenitor cells (CPCs) improves cardiac function in heart failure patients. However, CPC function is reduced with age, limiting their regenerative potential. Aging is associated with numerous changes in cells including accumulation of mitochondrial DNA (mtDNA) mutations, but it is unknown how this impacts CPC function. Here, we demonstrate that acquisition of mtDNA mutations disrupts mitochondrial function, enhances mitophagy, and reduces the replicative and regenerative capacities of the CPCs. We show that activation of differentiation in CPCs is associated with expansion of the mitochondrial network and increased mitochondrial oxidative phosphorylation. Interestingly, mutant CPCs are deficient in mitochondrial respiration and rely on glycolysis for energy. In response to differentiation, these cells fail to activate mitochondrial respiration. This inability to meet the increased energy demand leads to activation of cell death. These findings demonstrate the consequences of accumulating mtDNA mutations and the importance of mtDNA integrity in CPC homeostasis and regenerative potential.


Asunto(s)
Proliferación Celular/genética , ADN Mitocondrial/genética , Mutación , Células Madre/metabolismo , Animales , Western Blotting , Diferenciación Celular/genética , Supervivencia Celular/genética , Células Cultivadas , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Miocardio/citología , Miocardio/metabolismo , Biogénesis de Organelos , Fosforilación Oxidativa , Consumo de Oxígeno/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
PLoS One ; 9(1): e85283, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416379

RESUMEN

This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old) rats were subjected or not to leucine supplementation (1.35 g/kg per day) started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases.


Asunto(s)
Suplementos Dietéticos , Leucina/administración & dosificación , Músculo Esquelético/efectos de los fármacos , Distrofias Musculares/dietoterapia , Regeneración/efectos de los fármacos , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Administración Oral , Animales , Frío , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Miembro Posterior , Masculino , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitinación/efectos de los fármacos
11.
PLoS One ; 8(10): e76752, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24124592

RESUMEN

In the present study we have compared the effects of leucine supplementation and its metabolite ß-hydroxy-ß-methyl butyrate (HMB) on the ubiquitin-proteasome system and the PI3K/Akt pathway during two distinct atrophic conditions, hindlimb immobilization and dexamethasone treatment. Leucine supplementation was able to minimize the reduction in rat soleus mass driven by immobilization. On the other hand, leucine supplementation was unable to provide protection against soleus mass loss in dexamethasone treated rats. Interestingly, HMB supplementation was unable to provide protection against mass loss in all treatments. While solely fiber type I cross sectional area (CSA) was protected in immobilized soleus of leucine-supplemented rats, none of the fiber types were protected by leucine supplementation in rats under dexamethasone treatment. In addition and in line with muscle mass results, HMB treatment did not attenuate CSA decrease in all fiber types against either immobilization or dexamethasone treatment. While leucine supplementation was able to minimize increased expression of both Mafbx/Atrogin and MuRF1 in immobilized rats, leucine was only able to minimize Mafbx/Atrogin in dexamethasone treated rats. In contrast, HMB was unable to restrain the increase in those atrogenes in immobilized rats, but in dexamethasone treated rats, HMB minimized increased expression of Mafbx/Atrogin. The amount of ubiquitinated proteins, as expected, was increased in immobilized and dexamethasone treated rats and only leucine was able to block this increase in immobilized rats but not in dexamethasone treated rats. Leucine supplementation maintained soleus tetanic peak force in immobilized rats at normal level. On the other hand, HMB treatment failed to maintain tetanic peak force regardless of treatment. The present data suggested that the anti-atrophic effects of leucine are not mediated by its metabolite HMB.


Asunto(s)
Suplementos Dietéticos , Leucina/administración & dosificación , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Sarcopenia/metabolismo , Valeratos/administración & dosificación , Animales , Suspensión Trasera/efectos adversos , Masculino , Músculo Esquelético/patología , Tamaño de los Órganos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Sarcopenia/tratamiento farmacológico , Sarcopenia/patología
12.
Am J Phys Med Rehabil ; 92(5): 411-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22854904

RESUMEN

OBJECTIVE: The aim of this study was to assess the mRNA levels of atrogin-1, muscle ring finger 1, and myostatin in rat quadriceps after anterior cruciate ligament (ACL) transection. DESIGN: Wistar rats were randomized into three different groups: ACL (surgery and ACL transection), sham (surgery without ACL transection), and control. Vastus medialis, rectus femoris, and vastus lateralis muscles were harvested at 1, 2, 3, 7, and 15 days after ACL transection. The mRNA levels of atrogin-1, muscle ring finger 1, and myostatin, as well as the ubiquitinated protein content, muscle mass, and cross-sectional area of the muscle fibers, were evaluated. RESULTS: Elevated levels of atrogin-1, muscle ring finger 1, and myostatin mRNA were detected in all tested muscles at most time points. The ubiquitinated protein content was increased at 3 days in the ACL and sham groups. The muscle mass of the ACL group was reduced at 3, 7, and 15 days (vastus lateralis and vastus medialis) and at 7 and 15 days (rectus femoris), whereas it was reduced in the sham group at 3 and 7 days (vastus lateralis and vastus medialis) and at 7 days (rectus femoris). The cross-sectional area of vastus medialis was reduced at 3, 7, and 15 days in the ACL group and at 3 and 7 days in the sham group. The cross-sectional area of the vastus lateralis was reduced at 7 and 15 days in the ACL group and at 7 days in the sham group. Whereas muscle mass and cross-sectional area recovery was noted in the sham group, no recovery was observed in the ACL group. CONCLUSIONS: Quadriceps atrophy after ACL transection involves increased levels of myostatin, atrogin-1, and muscle ring finger 1 mRNA and the accumulation of ubiquitinated protein.


Asunto(s)
Ligamento Cruzado Anterior/cirugía , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Miostatina/metabolismo , Músculo Cuádriceps/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Análisis de Varianza , Animales , Ligamento Cruzado Anterior/metabolismo , Biomarcadores/metabolismo , Western Blotting , Modelos Animales de Enfermedad , Masculino , Proteínas Musculares/genética , Atrofia Muscular/patología , Miostatina/genética , Músculo Cuádriceps/patología , Dominios RING Finger/genética , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Valores de Referencia , Proteínas Ligasas SKP Cullina F-box/genética , Sensibilidad y Especificidad
13.
Muscle Nerve ; 42(5): 778-87, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20976781

RESUMEN

This work was undertaken to provide further insight into the role of mammalian target of rapamycin complex 1 (mTORC1) in skeletal muscle regeneration, focusing on myofiber size recovery. Rats were treated or not with rapamycin, an mTORC1 inhibitor. Soleus muscles were then subjected to cryolesion and analyzed 1, 10, and 21 days later. A decrease in soleus myofiber cross-section area on post-cryolesion days 10 and 21 was accentuated by rapamycin, which was also effective in reducing protein synthesis in these freeze-injured muscles. The incidence of proliferating satellite cells during regeneration was unaltered by rapamycin, although immunolabeling for neonatal myosin heavy chain (MHC) was weaker in cryolesion+rapamycin muscles than in cryolesion-only muscles. In addition, the decline in tetanic contraction of freeze-injured muscles was accentuated by rapamycin. This study indicates that mTORC1 plays a key role in the recovery of muscle mass and the differentiation of regenerating myofibers, independently of necrosis and satellite cell proliferation mechanisms.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Serina-Treonina Quinasas TOR/fisiología , Animales , Antibióticos Antineoplásicos/farmacología , Western Blotting , Diferenciación Celular/fisiología , Proliferación Celular , Congelación , Inmunohistoquímica , Masculino , Contracción Muscular/fisiología , Proteínas Musculares/biosíntesis , Cadenas Pesadas de Miosina/metabolismo , Tamaño de los Órganos/fisiología , Fosforilación , Ratas , Ratas Wistar , Regeneración/fisiología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Sirolimus/farmacología
14.
J Struct Biol ; 170(2): 344-53, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20149877

RESUMEN

MuRF1 is a member of the RBCC (RING, B-box, coiled-coil) superfamily that has been proposed to act as an atrogin during muscle wasting. Here, we show that MuRF1 is preferentially induced in type-II muscle fibers after denervation. Fourteen days after denervation, MuRF1 protein was further elevated but remained preferentially expressed in type-II muscle fibers. Consistent with a fiber-type dependent function of MuRF1, the tibialis anterior muscle (rich in type-II muscle fibers) was considerably more protected in MuRF1-KO mice from muscle wasting when compared to soleus muscle with mixed fiber-types. We also determined fiber-type distributions in MuRF1/MuRF2 double-deficient KO (dKO) mice, because MuRF2 is a close homolog of MuRF1. MuRF1/MuRF2 dKO mice showed a profound loss of type-II fibers in soleus muscle. As a potential mechanism we identified the interaction of MuRF1/MuRF2 with myozenin-1, a calcineurin/NFAT regulator and a factor required for maintenance of type-II muscle fibers. MuRF1/MuRF2 dKO mice had lost myozenin-1 expression in tibialis anterior muscle, implicating MuRF1/MuRF2 as regulators of the calcineurin/NFAT pathway. In summary, our data suggest that expression of MuRF1 is required for remodeling of type-II fibers under pathophysiological stress states, whereas MuRF1 and MuRF2 together are required for maintenance of type-II fibers, possibly via the regulation of myozenin-1.


Asunto(s)
Fibras Musculares de Contracción Rápida/fisiología , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Desnervación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos , Fibras Musculares de Contracción Rápida/citología , Proteínas Musculares/genética , Cadenas Pesadas de Miosina/metabolismo , Proteínas de Motivos Tripartitos , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética
15.
Muscle Nerve ; 41(6): 800-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20082419

RESUMEN

The aim of this study was to assess the effect of leucine supplementation on elements of the ubiquitin-proteasome system (UPS) in rat skeletal muscle during immobilization. This effect was evaluated by submitting the animals to a leucine supplementation protocol during hindlimb immobilization, after which different parameters were determined, including: muscle mass; cross-sectional area (CSA); gene expression of E3 ligases/deubiquitinating enzymes; content of ubiquitinated proteins; and rate of protein synthesis. Our results show that leucine supplementation attenuates soleus muscle mass loss driven by immobilization. In addition, the marked decrease in the CSA in soleus muscle type I fibers, but not type II fibers, induced by immobilization was minimized by leucine feeding. Interestingly, leucine supplementation severely minimized the early transient increase in E3 ligase [muscle ring finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/atrogin-1] gene expression observed during immobilization. The reduced peak of E3 ligase gene expression was paralleled by a decreased content of ubiquitinated proteins during leucine feeding. The protein synthesis rate decreased by immobilization and was not affected by leucine supplementation. Our results strongly suggest that leucine supplementation attenuates muscle wasting induced by immobilization via minimizing gene expression of E3 ligases, which consequently could downregulate UPS-driven protein degradation. It is notable that leucine supplementation does not restore decreased protein synthesis driven by immobilization.


Asunto(s)
Leucina/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/patología , Atrofia Muscular/prevención & control , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Administración Oral , Animales , Ciclofilina A/genética , Suplementos Dietéticos , Regulación Enzimológica de la Expresión Génica , Suspensión Trasera , Histocitoquímica , Insulina/sangre , Leucina/administración & dosificación , Leucina/farmacología , Masculino , Músculo Esquelético/anatomía & histología , Músculo Esquelético/patología , Atrofia Muscular/sangre , ARN/genética , ARN/aislamiento & purificación , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitina-Proteína Ligasas/genética
16.
Muscle Nerve ; 40(6): 992-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19705480

RESUMEN

In this study we investigated the gene expression of proteins related to myostatin (MSTN) signaling during skeletal muscle longitudinal growth. To promote muscle growth, Wistar male rats were submitted to a stretching protocol for different durations (12, 24, 48, and 96 hours). Following this protocol, soleus weight and length and sarcomere number were determined. In addition, expression levels of the genes that encode MSTN, follistatin isoforms 288 and 315 (FLST288 and FLST315), follistatin-like 3 protein (FLST-L3), growth and differentiation factor-associated protein-1 (GASP-1), activin IIB receptor (ActIIB), and SMAD-7 were determined by real-time polymerase chain reaction. Prolonged stretching increased soleus weight, length, and sarcomere number. In addition, MSTN gene expression was increased at 12-24 hours, followed by a decrease at 96 hours when compared with baseline values. FLST isoforms, FLST-L3, and GASP-1 mRNA levels increased significantly over all time-points. ActIIB gene expression decreased quickly at 12-24 hours. SMAD-7 mRNA levels showed a late increase at 48 hours, which peaked at 96 hours. The gene expression pattern of inhibitory proteins related to MSTN signaling suggests a strong downregulation of this pathway in response to prolonged stretching.


Asunto(s)
Regulación de la Expresión Génica , Ejercicios de Estiramiento Muscular , Músculo Esquelético/crecimiento & desarrollo , Miostatina/antagonistas & inhibidores , Animales , Regulación hacia Abajo , Masculino , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Ratas , Ratas Wistar , Sarcómeros/metabolismo , Transducción de Señal
17.
J Cell Physiol ; 218(3): 480-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19006180

RESUMEN

The eukaryotic translation initiation factor 5A (eIF5A) contains a special amino acid residue named hypusine that is required for its activity, being produced by a post-translational modification using spermidine as substrate. Stem cells from rat skeletal muscles (satellite cells) were submitted to differentiation and an increase of eIF5A gene expression was observed. Higher content of eIF5A protein was found in satellite cells on differentiation in comparison to non-differentiated satellite cells and skeletal muscle. The treatment with N1-guanyl-1,7-diaminoheptane (GC7), a hypusination inhibitor, reversibly abolished the differentiation process. In association with the differentiation blockage, an increase of glucose consumption and lactate production and a decrease of glucose and palmitic acid oxidation were observed. A reduction in cell proliferation and protein synthesis was also observed. L-Arginine, a spermidine precursor and partial suppressor of muscle dystrophic phenotype, partially abolished the GC7 inhibitory effect on satellite cell differentiation. These results reveal a new physiological role for eIF5A and contribute to elucidate the molecular mechanisms involved in muscle regeneration.


Asunto(s)
Diferenciación Celular , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Arginina/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromatina/metabolismo , Conectina , Regulación de la Expresión Génica/efectos de los fármacos , Guanina/análogos & derivados , Guanina/farmacología , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Proteína MioD/metabolismo , Oxidación-Reducción/efectos de los fármacos , Factores de Iniciación de Péptidos/genética , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Células Madre/efectos de los fármacos , Factor 5A Eucariótico de Iniciación de Traducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA