Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Pollut ; 359: 124596, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053796

RESUMEN

Plant protection products (PPPs) play a fundamental role in the maintenance of agricultural fields and private/public green areas, however they can contaminate zones nearby the application point due to wind drift, resuspension, and evaporation. Several studied have deepened the relationship between PPPs and living beings' health, suggesting that these products might have a negative influence. Some PPPs belong to the class of Emergent Contaminants, which are compounds whose knowledge on the environmental distribution and influence is limited. These issues are even more stressed in urban aerosol, due to the high residential density that characterizes this area. Therefore, this study assessed the contamination caused by polar PPPs, such as herbicides (i.e., Glyphosate), fungicides (i.e., Fosetyl Aluminium), and growth regulators (i.e. Maleic Hydrazide), in size-segregated urban aerosol and evaluated their concentration variability with respect to atmospheric parameters (humidity, temperature, rain). Moreover, hypotheses on possible sources were formulated, exploiting also back-trajectories of air masses. A total of six PPPs were found in the samples: glyphosate was more present in the coarse fraction (2.5-10 µm), Fosetyl Aluminium, chlorate and perchlorate were more present in the coarse/fine fractions (10-1 µm), while cyanuric acid and phosphonic acid were mostly concentrated in the fine/ultrafine fractions (<1 µm). While for the first four we suspect of local sources, such as private gardening, the two latter might derive from the entire Po Valley, a highly polluted area in the North of Italy, and from degradation of other substances.

2.
Chemosphere ; 357: 142073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641289

RESUMEN

Open biomass burning (BB) events are a well-known primary aerosol source, resulting in the emission of significant amount of gaseous and particulate matter and affecting Earth's radiation budget. The 2019-2020 summer, known as "Australian Black Summer", showed exceptional duration and intensity of seasonal wildfires, triggered by high temperatures and severe droughts. Since increasing megafires are predicted due to expected climate changes, it is critical to study the impact of BB aerosol on a large scale and evaluate related transport processes. In this study, five aerosol samples (total suspended particles with a diameter >1 µm) were collected during the XXXV Italian Expedition in Antarctica on board of the R/V Laura Bassi from 6th of January to February 16, 2020, along the sailing route from Lyttelton harbor (New Zealand) to Terra Nova Bay (Antarctica). Levoglucosan and its isomers have been analyzed as markers of BB, together with polycyclic aromatic hydrocarbons (PAHs), sucrose and alcohol sugars. Ionic species and carboxylic acids have been analyzed to support the identification of aerosol sources and its aging. Results showed high levoglucosan concentrations (325-1266 pg m-3) during the campaign, suggesting the widespread presence of smoke in the region, because of huge wildfire releases. Backward trajectories indicated the presence of long-range atmospheric transport from South America, probably carrying wildfires plume, in agreement with literature. Regional sources have been suggested for PAHs, particularly for 3-4 rings' compounds; monosaccharides, sucrose, arabitol, and mannitol were related to marine and biogenic contributions. In a warming climate scenario, more frequent and extensive wildfire episodes are expected in Australia, potentially altering albedo, aerosol radiative properties, and cloud interactions. Therefore, it is crucial to strengthens the investigations on the regional climatic effects of these events in Antarctica.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Monitoreo del Ambiente , Glucosa/análogos & derivados , Estaciones del Año , Humo , Incendios Forestales , Aerosoles/análisis , Regiones Antárticas , Contaminantes Atmosféricos/análisis , Humo/análisis , Nueva Zelanda , Hidrocarburos Policíclicos Aromáticos/análisis , Australia , Material Particulado/análisis , Biomasa , Cambio Climático
3.
Artículo en Inglés | MEDLINE | ID: mdl-38630396

RESUMEN

Bisphenol A (BPA) is a widespread organic micro-pollutant, found in most environments, including alpine and Arctic regions, and several matrices such as waters and aerosols. Polar regions are characterized by periods of intense irradiation with no sunset due to the continuous sunlight, while alpine areas, despite following the day-night cycle of mid-latitudes, also undergo strong irradiation. For such conditions, it is possible that a fraction of the BPA present in snow may degrade through direct photolysis, producing other unknown species with different environmental mobility and possible ecotoxic effects. Furthermore, the snowpack is rich in species (known as photosensitizers) that facilitate indirect photodegradation processes through reactions involving hydroxyl radicals  · OH , singlet oxygen (1O2), excited triplet states of the organic fraction (3CDOM*), and nitrite/nitrate. In this study, we investigated both direct and indirect photodegradation of BPA in the presence of specific photosensitizers producing  · OH , 1O2, 3CDOM*, and NO2- to specifically explore the products of the reaction. The study was conducted in both liquid water and ice, under light and dark conditions. Results, obtained by HPLC-HRMS, revealed that the matrix in which the reaction takes place, in addition to the photosensitizer used, may influence the degradation by-products. This allows for the possibility of distinguishing the reaction environment based on the identified product.

4.
Environ Res ; 249: 118401, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331156

RESUMEN

This study investigates for the first time the contamination of water and sediment of the Venice Lagoon by twenty Contaminants of Emerging Concern (CECs): three hormones, six pharmaceutical compounds (diclofenac and five antibiotics, three of which are macrolides), nine pesticides (methiocarb, oxadiazon, metaflumizone, triallate, and five neonicotinoids), one antioxidant (BHT), and one UV filter (EHMC). Water and sediment samples were collected in seven sites in four seasons, with the aim of investigating the occurrence, distribution, and possible emission sources of the selected CECs in the studied transitional environment. The most frequently detected contaminants in water were neonicotinoid insecticides (with a frequency of quantification of single contaminants ranging from 73% to 92%), and EHMC (detected in the 77% of samples), followed by BHT (42%), diclofenac (39%), and clarithromycin (35%). In sediment the highest quantification frequencies were those of BHT (54%), estrogens (ranging from 35% to 65%), and azithromycin (46%). Although this baseline study does not highlight seasonal or spatial trends, results suggested that two of the major emission sources of CECs in the Venice Lagoon could be tributary rivers from its drainage basin and treated wastewater, due to the limited removal rates of some CECs in WWTPs. These preliminary results call for further investigations to better map priority emission sources and improve the understanding of CECs environmental behavior, with the final aim of drawing up a site-specific Watch List of CECs for the Venice Lagoon and support the design of more comprehensive monitoring plans in the future.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Contaminantes Químicos del Agua , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Italia , Plaguicidas/análisis , Preparaciones Farmacéuticas/análisis
5.
Environ Sci Pollut Res Int ; 30(49): 107878-107886, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37740162

RESUMEN

The study about how tyre-derived particles can potentially worsen the water quality and how traffic pollution markers can affect the environment is crucial for environmental management. Road emissions are known to contribute to pollution in various environments, and benzothiazoles and their derivates can be used to trace pollutant inputs related to surface runoff in the aquatic system. A total of eight benzothiazoles were determined in highway stormwater runoff and road dust collected from February to August 2022 near Venice (Casale sul Sile, Veneto Region, Italy). A new analytical method was validated, by using an UHPLC system coupled to a mass spectrometer (triple quadrupole). The target compounds were determined in both dissolved phase and suspended particulate matter of runoff, and the road dust samples were divided into seven fractions depending on particle diameters to understand the fraction partitioning. The results indicate that 2-SO3H-BTH was the most concentrated benzothiazole in all the analysed substrates, suggesting tyre debris as the main source because it is usually used in the vulcanization process. 2-SO3H-BTH reached a mean concentration of 115 ± 59 µg L-1, 4 ± 3 µg L-1, and 411 ± 441 µg Kg-1 for dissolved phase, suspended particulate matter, and road dust, respectively, while 2-OH-BTH and BTH showed values about an order of magnitude lower. The size distribution of most BTHs suggests that they are distributed in the finest fraction of road dust. An exception was given by 2-SCNMeS-BTH being present only in particles with a diameter > 1 mm.


Asunto(s)
Polvo , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Benzotiazoles , Material Particulado , Calidad del Agua
6.
Sci Total Environ ; 904: 166900, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683865

RESUMEN

Fish health can be affected by a multitude of stressors. Acute and chronic stress assessment via specific hormones monitoring has become a trending research topic. Common investigated matrices are blood and plasma, but recently less invasive substrates have been identified. As chemical composition of skin mucus/epidermis has been demonstrated to link with acute stress, and of scales with chronic stress in fish, the aim of the study was firstly to improve the determination of three stress hormones, namely cortisol (COL), cortisone (CON), and dehydroepiandrosterone-3-sulfate (DHEAS), in skin mucus/epidermis and scales of Aphanius fasciatus. Secondly, an evaluation of the impact of different environments on hormones concentrations was carried out. A liquid chromatography coupled to tandem mass spectrometry method (HPLC-MS/MS) and a preanalytical procedure were validated to determine COL, CON and DHEAS. This methodology was applied to compare a pull of field-collected fish with a pull of fish housed in the laboratory for one year. Our results highlighted a significant presence of cortisol and cortisone in epidermis of the latter pull (averagely 0.10 and 0.14 ng mg-1, respectively), while in the first pull both hormones were much less concentrated (averagely 0.006 and 0.008 ng mg-1, respectively). Scales of both pulls showed presence of hormones, with a higher concentration for fish housed in the laboratory, although a relevant difference in concentration was found only for cortisone. DHEAS was always below the limit of detection.


Asunto(s)
Cortisona , Hidrocortisona , Humanos , Cromatografía Líquida de Alta Presión , Hidrocortisona/análisis , Espectrometría de Masas en Tándem/métodos , Cortisona/análisis , Epidermis/química
7.
Talanta ; 265: 124799, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37327665

RESUMEN

A new Continuous Flow Analysis (CFA) system coupled with Fast Liquid Chromatography - tandem Mass Spectrometry (FLC-MS/MS) has been recently developed for determining organic markers in ice cores. In this work we present an upgrade of this innovative technique, optimized for the detection of levoglucosan in ice cores, a crucial tracer for reconstructing past fires. The upgrade involved a specific optimization of the chromatographic and mass spectrometric parameters, allowing for a higher sampling resolution (down to 1 cm) and the simultaneous collection of discrete samples, for off-line analysis of water stable isotopes and additional chemical markers. The robustness and repeatability of the method has been tested by the analysis of multiple sticks of ice cut from the same shallow alpine ice core, and running the system for several hours on different days. The results show similar and comparable trends between the ice sticks. With this upgraded system, a higher sensitivity and a lower limit of detection (LOD) was achieved compared to discrete analysis of alpine samples for levoglucosan measurements. The new LOD was as low as 66 ng L-1, a net improvement over the previous LOD of 600 ng L-1.

8.
Sci Total Environ ; 892: 164480, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37263426

RESUMEN

Whillans Subglacial Lake (SLW) lies beneath 801 m of ice in the lower portion of the Whillans Ice Stream (WIS) in West Antarctica and is part of an extensive and active subglacial drainage network. Here, the geochemical characterization of SLW rare earth elements (REE), trace elements (TE), free amino acids (FAA), and phenolic compounds (PC) measured in lakewater and sediment porewater are reported. The results show, on average, higher values of REEs in the lakewater than in the porewater, and clear changes in all REE concentrations and select redox sensitive trace element concentrations in porewaters at a depth of ~15 cm in the 38 cm lake sediment core. This is consistent with prior results on the lake sediment redox conditions based on gas chemistry and microbiological data. Low concentrations of vanillyl phenols were measured in the SLW water column with higher concentrations in porewater samples and their concentration profiles in the sediments may also reflect changing redox conditions in the sediments. Vanillin concentrations increased with depth in the sediments as oxygenation decreases, while the concentrations of vanillic acid, the more oxidized component, were higher in the more oxygenated surface sediments. Collectively these results indicate redox changes occurring with the upper 38 cm of sediment in SLW and provide support for the existence of a seawater source, already hypothesized, in the sediments below the lowest measured depth, and of a complex and dynamic geochemical system beneath the West Antarctic Ice Sheet. Our results are the first to detail geochemical properties from an Antarctic subglacial environment using direct sampling technology. Due to their isolation from the wider environment, subglacial lakes represent one of our planets last pristine environments that provide habitats for microbial life and natural biogeochemical cycles but also impact the basal hydrology and can cause ice flow variations.


Asunto(s)
Metales de Tierras Raras , Oligoelementos , Lagos/química , Oligoelementos/análisis , Regiones Antárticas , Metales de Tierras Raras/análisis , Carbono
9.
Microbiome ; 11(1): 35, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864462

RESUMEN

BACKGROUND: Arctic snowpack microbial communities are continually subject to dynamic chemical and microbial input from the atmosphere. As such, the factors that contribute to structuring their microbial communities are complex and have yet to be completely resolved. These snowpack communities can be used to evaluate whether they fit niche-based or neutral assembly theories. METHODS: We sampled snow from 22 glacier sites on 7 glaciers across Svalbard in April during the maximum snow accumulation period and prior to the melt period to evaluate the factors that drive snowpack metataxonomy. These snowpacks were seasonal, accumulating in early winter on bare ice and firn and completely melting out in autumn. Using a Bayesian fitting strategy to evaluate Hubbell's Unified Neutral Theory of Biodiversity at multiple sites, we tested for neutrality and defined immigration rates at different taxonomic levels. Bacterial abundance and diversity were measured and the amount of potential ice-nucleating bacteria was calculated. The chemical composition (anions, cations, organic acids) and particulate impurity load (elemental and organic carbon) of the winter and spring snowpack were also characterized. We used these data in addition to geographical information to assess possible niche-based effects on snow microbial communities using multivariate and variable partitioning analysis. RESULTS: While certain taxonomic signals were found to fit the neutral assembly model, clear evidence of niche-based selection was observed at most sites. Inorganic chemistry was not linked directly to diversity, but helped to identify predominant colonization sources and predict microbial abundance, which was tightly linked to sea spray. Organic acids were the most significant predictors of microbial diversity. At low organic acid concentrations, the snow microbial structure represented the seeding community closely, and evolved away from it at higher organic acid concentrations, with concomitant increases in bacterial numbers. CONCLUSIONS: These results indicate that environmental selection plays a significant role in structuring snow microbial communities and that future studies should focus on activity and growth. Video Abstract.


Asunto(s)
Bacterias , Cubierta de Hielo , Teorema de Bayes , Estaciones del Año , Bacterias/genética , Biodiversidad
10.
Chemosphere ; 327: 138530, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37001758

RESUMEN

Polar regions should be given greater consideration with respect to the monitoring, risk assessment, and management of potentially harmful chemicals, consistent with requirements of the precautionary principle. Protecting the vulnerable polar environments requires (i) raising political and public awareness and (ii) restricting and preventing global emissions of harmful chemicals at their sources. The Berlin Statement is the outcome of an international workshop with representatives of the European Commission, the Arctic Council, the Antarctic Treaty Consultative Meeting, the Stockholm Convention on Persistent Organic Pollutants (POPs), environmental specimen banks, and data centers, as well as scientists from various international research institutions. The statement addresses urgent chemical pollution issues in the polar regions and provides recommendations for improving screening, monitoring, risk assessment, research cooperation, and open data sharing to provide environmental policy makers and chemicals management decision-makers with relevant and reliable contaminant data to better protect the polar environments. The consensus reached at the workshop can be summarized in just two words: "Act now!" Specifically, "Act now!" to reduce the presence and impact of anthropogenic chemical pollution in polar regions by. •Establishing participatory co-development frameworks in a permanent multi-disciplinary platform for Arctic-Antarctic collaborations and establishing exchanges between the Arctic Monitoring and Assessment Program (AMAP) of the Arctic Council and the Antarctic Monitoring and Assessment Program (AnMAP) of the Scientific Committee on Antarctic Research (SCAR) to increase the visibility and exchange of contaminant data and to support the development of harmonized monitoring programs. •Integrating environmental specimen banking, innovative screening approaches and archiving systems, to provide opportunities for improved assessment of contaminants to protect polar regions.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales , Regiones Antárticas , Regiones Árticas , Clima Frío , Contaminantes Ambientales/análisis , Contaminación Ambiental/prevención & control , Medición de Riesgo
11.
Sci Total Environ ; 879: 163070, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36990237

RESUMEN

The study of airborne chemical markers is crucial for identifying sources of aerosols, and their atmospheric processes of transport and transformation. The investigation of free amino acids and their differentiation between the L- and D- enantiomers are even more important to understand their sources and atmospheric fate. Aerosol samples were collected with a high-volume sampler with cascade impactor at Mario Zucchelli Station (MZS) on the coast of the Ross Sea (Antarctica) for two summer campaigns (2018/19 and 2019/20). The total mean concentration of free amino acids in PM10 was 4 ± 2 pmol m-3 for both campaigns and most of free amino acids were distributed in fine particles. The coarse mode of airborne D-Alanine and dimethylsufoniopropionate in seawater showed a similar trend during both Antarctic campaigns. Thus, the study of D/L Ala ratio in fine, coarse and PM10 fractions indicated the microlayer as the local source. This paper demonstrated that free amino acids follow the trend of DMS and MSA release occurred in the Ross Sea, confirming their applicability as markers for phytoplankton bloom also in paleoclimatic studies.

12.
Talanta ; 253: 123969, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36191513

RESUMEN

Pesticides play a key-role in the development of the agrifood sector allowing controlling pest growth and, thus, improving the production rates. Pesticides chemical stability is responsible of their persistency in environmental matrices leading to bioaccumulation in animal tissues and hazardous several effects on living organisms. The studies regarding long-term effects of pesticides exposure and their toxicity are still limited to few studies focusing on over-exposed populations, but no extensive dataset is currently available. Pesticides biomonitoring relies mainly on chromatographic techniques coupled with mass spectrometry, whose large-scale application is often limited by feasibility constraints (costs, time, etc.). On the contrary, chemical sensors allow rapid, in-situ screening. Several sensors were designed for the detection of pesticides in environmental matrices, but their application in biological fluids needs to be further explored. Aiming at contributing to the implementation of pesticides biomonitoring methods, we mapped the main gaps between screening and chromatographic methods. Our overview focuses on the recent advances (2016-2021) in analytical methods for the determination of commercial pesticides in human biological fluids and provides guidelines for their application.


Asunto(s)
Plaguicidas , Humanos
13.
Sci Total Environ ; 858(Pt 1): 159709, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309265

RESUMEN

In recent years, there is increasing attention on the contaminants of emerging concern (CECs), which include plasticizers, flame retardants, industrial chemicals, pharmaceuticals, and personal care products, since they have been detected even far away from pollution sources. The polar regions are not exempt from the presence of anthropogenic contaminants, and they are employed as a model for understanding the pollutant fate and impact. During the 2021 spring campaign, sixteen surface snow samples were collected close to the research station of Ny-Ålesund located on the Spitsbergen Island of the Norwegian Svalbard Archipelago. The samples were extracted by solid-phase extraction and analyzed by liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS) following an untargeted approach. Compound tentative identification was obtained with the aid of the software Compound Discoverer, using both mass spectral database search and manual validation. Among the 114 compounds identified with a high confidence level in the snow samples, >80 have some commercial or industrial use (drugs, plasticizers, fragrances, etc.), therefore they could be of anthropogenic origin. Nonetheless, a clear contamination trend did not appear in the snow samples collected on eight different days during one month. The comparison with aerosol samples collected in the same area did not help identifying the source, either, since only a few compounds were in common, and they were mainly of natural origin. As such, the analysis of aerosol sample did not support possible long-range transport, also considering that compounds were detected mostly in the coarse fraction.


Asunto(s)
Monitoreo del Ambiente , Nieve , Nieve/química , Svalbard , Monitoreo del Ambiente/métodos , Plastificantes , Cromatografía Liquida , Espectrometría de Masas
14.
Environ Pollut ; 308: 119657, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35750305

RESUMEN

North-Eastern Italy and in particular Veneto Region, stands out as a major centre of agriculture and viticulture which has rapidly expanded in the last decade with high productivity indexes. In this context, assessing atmospheric pollution caused by crop spraying with pesticides in rural areas and their transport to high-altitude remote sites is crucial to provide a basis for understanding possible impacts on the environment and population health. We aim to improve existing methods with a highly sensitive technique by using high pressure anion exchange chromatography coupled to a triple quadrupole mass spectrometer. Thus, a total of fourteen polar pesticides were determined in aerosol samples collected from August to December 2021 at Roncade (Venetian plain) and Col Margherita Observatory (Dolomites). The observatory was chosen as the background site as it is representative of the surrounding alpine region. Some samples revealed a substantial amount of cyanuric acid mainly at Roncade (mean concentration of 10 ± 10 ng m-3), glyphosate and fosetyl-aluminium (0.1 ± 0.2 and 0.1 ± 0.1 ng m-3, respectively). Surprisingly, some pesticides have been also found at Col Margherita, a high mountain background site, with concentrations an order of magnitude lower than at Roncade. This is the first time that fourteen polar pesticides have been assessed in the aerosol phase of the Po' Valley and detected at a high-altitude remote site, and consequently this study provides the first data on their occurrences in Italian aerosols. It represents a basis for the assessment of risks for humans.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Plaguicidas , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Humanos , Plaguicidas/análisis
15.
Artículo en Inglés | MEDLINE | ID: mdl-35442859

RESUMEN

Forty-two samples of feed, saliva, urines, and faeces collected from a cattle farm were investigated with the aim to evaluate the occurrence of glyphosate in faeces, urine and saliva. Glyphosate in the feed was also quantified to understand how it was assimilated by mammals. All cows excreted glyphosate in their faeces at concentrations between 57 and 983 ng g-1. In contrast, only 55% of urine and one sample of saliva tested positive. Most of the feeds demonstrated a non-negligible presence of glyphosate. In particular, a silage containing soybeans from genetically modified cultivation showed a concentration one order of magnitude higher than the other feeds. This study aims to provide the first complete determination of glyphosate in a cattle farm, considering the possible re-entry into the environment through the spreading of liquid and solid sewage and its possible impact on groundwater.


Asunto(s)
Alimentación Animal , Saliva , Alimentación Animal/análisis , Animales , Bovinos , Granjas , Heces , Femenino , Glicina/análogos & derivados , Mamíferos , Proyectos Piloto , Glifosato
16.
Anal Chem ; 94(13): 5344-5351, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35319865

RESUMEN

The development of new analytical systems and the improvement of the existing ones to obtain high-resolution measurements of chemical markers in samples from ice cores, is one of the main challenges the paleoclimatic scientific community is facing. Different chemical species can be used as markers for tracking emission sources or specific environmental processes. Although some markers, such as methane sulfonic acid (a proxy of marine productivity), are commonly used, there is a lack of data on other organic tracers in ice cores, making their continuous analysis analytically challenging. Here, we present an innovative combination of fast liquid chromatography coupled with tandem mass spectrometry (FLC-MS/MS) to continuously determine organic markers in ice cores. After specific optimization, this approach was applied to the quantification of vanillic and syringic acids, two specific markers for biomass burning. Using the validated method, detection limits of 3.6 and 4.6 pg mL-1 for vanillic and syringic acids, respectively, were achieved. Thanks to the coupling of FLC-MS/MS with the continuous flow analytical system, we obtained one measurement every 30 s, which corresponds to a sampling resolution of a sample every 1.5 cm with a melting rate of 3.0 cm min-1. To check the robustness of the method, we analyzed two parallel sticks of an alpine ice core over more than 5 h. Vanillic acid was found with concentrations in the range of picograms per milliliter, suggesting the combustion of coniferous trees, which are found throughout the Italian Alps.


Asunto(s)
Espectrometría de Masas en Tándem , Biomasa , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos
17.
Environ Sci Pollut Res Int ; 29(11): 16383-16391, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34651274

RESUMEN

Lagoon water, suspended particulate matter, and sediment samples from seven sites at Lagoon of Venice were collected from 2019 to 2021 in order to study the presence of the herbicide glyphosate (N-(phosphonomethyl)glycine), among the most widely used agricultural chemicals worldwide, but its occurrence in lagoon water environment has not been deeply investigated. The sites were selected considering a supposed diversity of inputs and of pollution levels. An analytical method based on ion chromatography coupled with tandem mass spectrometry was optimized and validated for lagoon water, marine particulate matter, and sediment samples. Maximum concentrations of glyphosate were 260 and 7 ng L-1 for lagoon water and suspended particulate matter, respectively, and 15 ng g-1 for sediment, with some spatial and temporal fluctuations. Our results demonstrate that glyphosate content in the Venice Lagoon mainly depends on external forcing from river inlets and agricultural lagoon activities.


Asunto(s)
Material Particulado , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Glicina/análogos & derivados , Italia , Material Particulado/análisis , Agua , Contaminantes Químicos del Agua/análisis , Glifosato
18.
Environ Sci Pollut Res Int ; 29(10): 13905-13916, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34599449

RESUMEN

COVID-19 pandemic raised a debate regarding the role of airborne transmission. Information regarding virus-laden aerosol concentrations is still scarce in community indoors and what are the risks for general public and the efficiency of restriction policies. This work investigates, for the first time in Italy, the presence of SARS-CoV-2 RNA in air samples collected in different community indoors (one train station, two food markets, one canteen, one shopping centre, one hair salon, and one pharmacy) in three Italian cities: metropolitan city of Venice (NE of Italy), Bologna (central Italy), and Lecce (SE of Italy). Air samples were collected during the maximum spread of the second wave of pandemic in Italy (November and December 2020). All collected samples tested negative for the presence of SARS-CoV-2, using both real-time RT-PCR and ddPCR, and no significant differences were observed comparing samples taken with and without customers. Modelling average concentrations, using influx of customers' data and local epidemiological information, indicated low values (i.e. < 0.8 copies m-3 when cotton facemasks are used and even lower for surgical facemasks). The results, even if with some limitations, suggest that the restrictive policies enforced could effectively reduce the risk of airborne transmissions in the community indoor investigated, providing that physical distance is respected.


Asunto(s)
Microbiología del Aire , COVID-19 , Pandemias , SARS-CoV-2/aislamiento & purificación , Humanos , Italia , ARN Viral
19.
Sci Total Environ ; 809: 151137, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34699823

RESUMEN

Airborne transmission of SARS-CoV-2 has been object of debate in the scientific community since the beginning of COVID-19 pandemic. This mechanism of transmission could arise from virus-laden aerosol released by infected individuals and it is influenced by several factors. Among these, the concentration and size distribution of virus-laden particles play an important role. The knowledge regarding aerosol transmission increases as new evidence is collected in different studies, even if it is not yet available a standard protocol regarding air sampling and analysis, which can create difficulties in the interpretation and application of results. This work reports a systematic review of current knowledge gained by 73 published papers on experimental determination of SARS-CoV-2 RNA in air comparing different environments: outdoors, indoor hospitals and healthcare settings, and public community indoors. Selected papers furnished 77 datasets: outdoor studies (9/77, 11.7%) and indoor studies (68/77. 88.3%). The indoor datasets in hospitals were the vast majority (58/68, 85.3%), and the remaining (10/68, 14.7%) were classified as community indoors. The fraction of studies having positive samples, as well as positivity rates (i.e. ratios between positive and total samples) are significantly larger in hospitals compared to the other typologies of sites. Contamination of surfaces was more frequent (in indoor datasets) compared to contamination of air samples; however, the average positivity rate was lower compared to that of air. Concentrations of SARS-CoV-2 RNA in air were highly variables and, on average, lower in outdoors compared to indoors. Among indoors, concentrations in community indoors appear to be lower than those in hospitals and healthcare settings.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Aerosoles , Humanos , Pandemias , ARN Viral , SARS-CoV-2
20.
Nat Commun ; 12(1): 5836, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611165

RESUMEN

Polar stratospheric ozone has decreased since the 1970s due to anthropogenic emissions of chlorofluorocarbons and halons, resulting in the formation of an ozone hole over Antarctica. The effects of the ozone hole and the associated increase in incoming UV radiation on terrestrial and marine ecosystems are well established; however, the impact on geochemical cycles of ice photoactive elements, such as iodine, remains mostly unexplored. Here, we present the first iodine record from the inner Antarctic Plateau (Dome C) that covers approximately the last 212 years (1800-2012 CE). Our results show that the iodine concentration in ice remained constant during the pre-ozone hole period (1800-1974 CE) but has declined twofold since the onset of the ozone hole era (~1975 CE), closely tracking the total ozone evolution over Antarctica. Based on ice core observations, laboratory measurements and chemistry-climate model simulations, we propose that the iodine decrease since ~1975 is caused by enhanced iodine re-emission from snowpack due to the ozone hole-driven increase in UV radiation reaching the Antarctic Plateau. These findings suggest the potential for ice core iodine records from the inner Antarctic Plateau to be as an archive for past stratospheric ozone trends.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA