Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273613

RESUMEN

Myocarditis is an inflammatory disease that may lead to dilated cardiomyopathy. Viral infection of the myocardium triggers immune responses, which involve, among others, macrophage infiltration, oxidative stress, expression of pro-inflammatory cytokines, and microRNAs (miRNAs). The cardioprotective role of estrogen in myocarditis is well documented; however, sex differences in the miRNA expression in chronic myocarditis are still poorly understood, and studying them further was the aim of the present study. Male and female ABY/SnJ mice were infected with CVB3. Twenty-eight days later, cardiac tissue from both infected and control mice was used for real-time PCR and Western blot analysis. NFκB, IL-6, iNOS, TNF-α, IL-1ß, MCP-1, c-fos, and osteopontin (OPN) were used to examine the inflammatory state in the heart. Furthermore, the expression of several inflammation- and remodeling-related miRNAs was analyzed. NFκB, IL-6, TNF-α, IL-1ß, iNOS, and MCP-1 were significantly upregulated in male mice with CVB3-induced chronic myocarditis, whereas OPN mRNA expression was increased only in females. Further analysis revealed downregulation of some anti-inflammatory miRNA in male hearts (let7a), with upregulation in female hearts (let7b). In addition, dysregulation of remodeling-related miRNAs (miR27b and mir199a) in a sex-dependent manner was observed. Taken together, the results of the present study suggest a sex-specific expression of pro-inflammatory markers as well as inflammation- and remodeling-related miRNAs, with a higher pro-inflammatory response in male CVB3 myocarditis mice.


Asunto(s)
Infecciones por Coxsackievirus , Modelos Animales de Enfermedad , MicroARNs , Miocarditis , Animales , Miocarditis/metabolismo , Miocarditis/virología , Miocarditis/genética , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Masculino , Ratones , Infecciones por Coxsackievirus/metabolismo , Infecciones por Coxsackievirus/genética , Infecciones por Coxsackievirus/virología , Enterovirus Humano B , Biomarcadores/metabolismo , Caracteres Sexuales , Citocinas/metabolismo , Citocinas/genética , Miocardio/metabolismo , Miocardio/patología , Inflamación/genética , Inflamación/metabolismo , Factores Sexuales , Regulación de la Expresión Génica
2.
Cells ; 13(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39272992

RESUMEN

BACKGROUND: Aging and comorbidities like type 2 diabetes and obesity contribute to the development of chronic systemic inflammation, which impacts the development of heart failure and vascular disease. Increasing evidence suggests a role of pro-inflammatory M1 macrophages in chronic inflammation. A shift of metabolism from mitochondrial oxidation to glycolysis is essential for the activation of the pro-inflammatory M1 phenotype. Thus, reprogramming the macrophage metabolism may alleviate the pro-inflammatory phenotype and protect against cardiovascular diseases. In the present study, we hypothesized that the activation of estrogen receptors leads to the elevation of the mitochondrial deacetylase Sirt3, which supports mitochondrial function and mitigates the pro-inflammatory phenotype in macrophages. MATERIALS AND METHODS: Experiments were performed using the mouse macrophage cell line RAW264.7, as well as primary male or female murine bone marrow macrophages (BMMs). Macrophages were treated for 24 h with estradiol (E2) or vehicle (dextrin). The effect of E2 on Sirt3 expression was investigated in pro-inflammatory M1, anti-inflammatory/immunoregulatory M2, and naïve M0 macrophages. Mitochondrial respiration was measured by Seahorse assay, and protein expression and acetylation were determined by western blotting. RESULTS: E2 treatment upregulated mitochondrial Sirt3, reduced mitochondrial protein acetylation, and increased basal mitochondrial respiration in naïve RAW264.7 macrophages. Similar effects on Sirt3 expression and mitochondrial protein acetylation were observed in primary female but not in male murine BMMs. Although E2 upregulated Sirt3 in naïve M0, pro-inflammatory M1, and anti-inflammatory/immunoregulatory M2 macrophages, it reduced superoxide dismutase 2 acetylation and suppressed mitochondrial reactive oxygen species formation only in pro-inflammatory M1 macrophages. E2 alleviated the pro-inflammatory phenotype in M1 RAW264.7 cells. CONCLUSIONS: The study suggests that E2 treatment upregulates Sirt3 expression in macrophages. In primary BMMs, female-specific Sirt3 upregulation was observed. The Sirt3 upregulation was accompanied by mitochondrial protein deacetylation and the alleviation of the oxidative and pro-inflammatory phenotype in M1 macrophages. Thus, the E2-Sirt3 axis might be used in a therapeutic strategy to fight chronic systemic inflammation and prevent the development of inflammation-linked diseases.


Asunto(s)
Estrógenos , Inflamación , Macrófagos , Mitocondrias , Sirtuina 3 , Regulación hacia Arriba , Animales , Femenino , Masculino , Ratones , Acetilación/efectos de los fármacos , Estradiol/farmacología , Estrógenos/farmacología , Inflamación/patología , Inflamación/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Fenotipo , Células RAW 264.7 , Sirtuina 3/metabolismo , Regulación hacia Arriba/efectos de los fármacos
4.
Aging Cell ; 22(8): e13894, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37365150

RESUMEN

Linked to exacerbated inflammation, myocarditis is a cardiovascular disease, which may lead to dilated cardiomyopathy. Although sex and age differences in the development of chronic myocarditis have been postulated, underlying cellular mechanisms remain poorly understood. In the current study, we aimed to investigate sex and age differences in mitochondrial homeostasis, inflammation, and cellular senescence. Cardiac tissue samples from younger and older patients with inflammatory dilated cardiomyopathy (DCMI) were used. The expression of Sirt1, phosphorylated AMPK, PGC-1α, Sirt3, acetylated SOD2, catalase, and several mitochondrial genes was analyzed to assess mitochondrial homeostasis. The expression of NF-κB, TLR4, and interleukins was used to examine the inflammatory state in the heart. Finally, several senescence markers and telomere length were investigated. Cardiac AMPK expression and phosphorylation were significantly elevated in male DCMI patients, whereas Sirt1 expression remained unchanged in all groups investigated. AMPK upregulation was accompanied by a preserved expression of all mitochondrial proteins/genes investigated in older male DCMI patients, whereas the expression of TOM40, TIM23, and the mitochondrial oxidative phosphorylation genes was significantly reduced in older female patients. Mitochondrial homeostasis in older male patients was further supported by the reduced acetylation of mitochondrial proteins as indicated by acetylated SOD2. The inflammatory markers NF-κB and TLR4 were downregulated in older male DCMI patients, whereas the expression of IL-18 was increased in older female patients. This was accompanied by progressed senescence in older DCMI hearts. In conclusion, older women experience more dramatic immunometabolic disorders on the cellular level than older men.


Asunto(s)
Cardiomiopatía Dilatada , Miocarditis , Sirtuina 3 , Humanos , Femenino , Masculino , Anciano , Miocarditis/complicaciones , Sirtuina 1/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Cardiomiopatía Dilatada/complicaciones , Fosforilación , FN-kappa B/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Inflamación/genética , Inflamación/complicaciones , Sirtuina 3/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
5.
Cytokine ; 161: 156077, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356495

RESUMEN

BACKGROUND: Studies have shown that lipoproteins, such as LDL and VLDL, as well as its major protein component ApoE2 impact on macrophage polarization important in atherosclerosis. Proprotein convertase subtilisin/kexin 9 (PCSK9) is a key regulator of lipoprotein receptor expression. The present study investigated the effect of the VLDL/VLDL-receptor (VLDL-R) axis on mononuclear cell polarization, as well as the role of PCSK9 and PCSK9 inhibitors (PCSK9i) within this network. METHODS: Human monocytic THP-1 cells and human monocyte-derived macrophages isolated from peripheral blood mononuclear cells (PBMC) were treated with either LPS/IFN-γ to induce a pro-inflammatory phenotype, or with IL-4/IL-13 to induce an anti-inflammatory phenotype. Cells were then subjected to further treatments by lipoproteins, PCSK9, PCSK9i and lipoprotein receptor blockers. RESULTS: LPS/IFN-γ treatment promoted a pro-inflammatory state with an increased expression of pro-inflammatory mediators such as TNF-α, CD80 and IL-1ß. VLDL co-treatment induced a switch of this pro-inflammatory phenotype to an anti-inflammatory phenotype. In pro-inflammatory cells, VLDL significantly decreased the expression of pro-inflammatory markers e.g., TNF-α, CD80, and IL-1ß. These effects were eliminated by PCSK9 and restored by co-incubation with a specific anti-PCSK9 monoclonal antibody (PCSK9i). Migration assays demonstrated that pro-inflammatory cells displayed a significantly higher invasive capacity when compared to untreated cells or anti-inflammatory cells. Moreover, pro-inflammatory cell chemotaxis was significantly decreased by VLDL-mediated acquisition of the anti-inflammatory phenotype. PCSK9 significantly lessened this VLDL-mediated migration inhibition, which was reversed by the PCSK9i. CONCLUSION: VLDL promotes mononuclear cell differentiation towards an anti-inflammatory phenotype. PCSK9, via its capacity to inhibit VLDL-R expression, reverses the VLDL-mediated anti-inflammatory action, thereby promoting a pro-inflammatory phenotype. Thus, PCSK9 targeting therapies may exert anti-inflammatory properties within the vessel wall.


Asunto(s)
Leucocitos Mononucleares , Proproteína Convertasa 9 , Humanos , Proproteína Convertasa 9/genética , Lipopolisacáridos , Factor de Necrosis Tumoral alfa , Lipoproteínas , Antiinflamatorios
6.
Cells ; 11(6)2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35326461

RESUMEN

Aging is one of the major non-reversible risk factors for several chronic diseases, including cancer, type 2 diabetes, dementia, and cardiovascular diseases (CVD), and it is a key cause of multimorbidity, disability, and frailty (decreased physical activity, fatigue, and weight loss). The underlying cellular mechanisms are complex and consist of multifactorial processes, such as telomere shortening, chronic low-grade inflammation, oxidative stress, mitochondrial dysfunction, accumulation of senescent cells, and reduced autophagy. In this review, we focused on the molecular mechanisms and translational aspects of cardiovascular aging-related inflammation, i.e., inflammaging.


Asunto(s)
Senescencia Celular , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Inflamación/etiología , Pulmón
7.
Front Immunol ; 12: 758767, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867999

RESUMEN

Mounting evidence argues for the significant impact of sex in numerous cardiac pathologies, including myocarditis. Macrophage polarization and activation of cardiac fibroblasts play a key role in myocardial inflammation and remodeling. However, the role of sex in these processes is still poorly understood. In this study, we investigated sex-specific alterations in the polarization of murine bone marrow-derived macrophages (BMMs) and the polarization-related changes in fibroblast activation. Cultured male and female murine BMMs from C57/BL6J mice were polarized into M1 (LPS) and M2 (IL-4/IL-13) macrophages. Furthermore, male and female cardiac fibroblasts from C57/BL6J mice were activated with TNF-α, TGF-ß, or conditioned medium from M1 BMMs. We found a significant overexpression of M1 markers (c-fos, NFκB, TNF-α, and IL-1ß) and M2 markers (MCP-1 and YM1) in male but not female activated macrophages. In addition, the ROS levels were higher in M1 male BMMs, indicating a stronger polarization. Similarly, the pro-fibrotic markers TGF-ß and IL-1ß were expressed in activated cardiac male fibroblasts at a significantly higher level than in female fibroblasts. In conclusion, the present study provides strong evidence for the male-specific polarization of BMMs and activation of cardiac fibroblasts in an inflammatory environment. The data show an increased inflammatory response and tissue remodeling in male mice.


Asunto(s)
Fibroblastos/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo
8.
Front Immunol ; 12: 686384, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122450

RESUMEN

Increasing evidence suggests male sex as a potential risk factor for a higher incidence of cardiac fibrosis, stronger cardiac inflammation, and dilated cardiomyopathy (DCM) in human myocarditis. Chronic activation of the immune response in myocarditis may trigger autoimmunity. The experimental autoimmune myocarditis (EAM) model has been well established for the study of autoimmune myocarditis, however the role of sex in this pathology has not been fully explored. In this study, we investigated sex differences in the inflammatory response in the EAM model. We analyzed the cardiac function, as well as the inflammatory stage and fibrosis formation in the heart of EAM male and female rats. 21 days after induction of EAM, male EAM rats showed a decreased ejection fraction, stroke volume and cardiac output, while females did not. A significantly elevated number of infiltrates was detected in myocardium in both sexes, indicating the activation of macrophages following EAM induction. The level of anti-inflammatory macrophages (CD68+ ArgI+) was only significantly increased in female hearts. The expression of Col3A1 and fibrosis formation were more prominent in males. Furthermore, prominent pro-inflammatory factors were increased only in male rats. These findings indicate sex-specific alterations in the inflammatory stage of EAM, with a pro-inflammatory phenotype appearing in males and an anti-inflammatory phenotype in females, which both significantly affect cardiac function in autoimmune myocarditis.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Miocarditis/inmunología , Miocardio/inmunología , Caracteres Sexuales , Animales , Enfermedades Autoinmunes/patología , Colágeno Tipo III/metabolismo , Citocinas/metabolismo , Femenino , Fibrosis , Macrófagos/metabolismo , Masculino , Miocarditis/patología , Ratas , Ratas Endogámicas Lew
9.
Aging (Albany NY) ; 12(23): 24117-24133, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33303703

RESUMEN

Dilated cardiomyopathy (DCM) belongs to the myocardial diseases associated with a severe impairment of cardiac function, but the question of how sex and age affect this pathology has not been fully explored. Impaired energy homeostasis, mitochondrial dysfunction, and systemic inflammation are well-described phenomena associated with aging. In this study, we investigated if DCM affects these phenomena in a sex- and age-related manner. We analyzed the expression of mitochondrial and antioxidant proteins and the inflammatory state in DCM heart tissue from younger and older women and men. A significant downregulation of Sirt1 expression was detected in older DCM patients. Sex-related differences were observed in the phosphorylation of AMPK that only appeared in older males with DCM, possibly due to an alternative Sirt1 regulation mechanism. Furthermore, reduced expression of several mitochondrial proteins (TOM40, TIM23, Sirt3, and SOD2) and genes (cox1, nd4) was only detected in old DCM patients, suggesting that age has a greater effect than DCM on these alterations. Finally, an increased expression of inflammatory markers in older, failing hearts, with a stronger pro-inflammatory response in men, was observed. Together, these findings indicate that age- and sex-related increased inflammation and disturbance of mitochondrial homeostasis occurs in male individuals with DCM.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Metabolismo Energético , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Mitocondrias Cardíacas/metabolismo , Biogénesis de Organelos , Proteínas Quinasas Activadas por AMP/metabolismo , Adolescente , Adulto , Factores de Edad , Anciano , Antioxidantes/metabolismo , Cardiomiopatía Dilatada/diagnóstico , Estudios de Casos y Controles , Femenino , Humanos , Inflamación/diagnóstico , Masculino , Persona de Mediana Edad , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales/metabolismo , Fosforilación , Factores Sexuales , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA