Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39190454

RESUMEN

A mesophilic, hyperacidophilic archaeon, strain M1T, was isolated from a rock sample from Vulcano Island, Italy. Cells of this organism were cocci with an average diameter of 1 µm. Some cells possessed filaments. The strain grew in the range of temperatures between 15 and 52 °C and pH 0.5-4.0 with growth optima at 40 °C and pH 1.0. Strain M1T was aerobic and chemoorganotrophic, growing on complex substrates, such as casamino acids, trypticase, tryptone, yeast and beef extracts. No growth at expenses of oxidation of elemental sulphur or reduced sulphur compounds, pyrite, or ferrous sulphate was observed. The core lipids were glycerol dibiphytanyl glycerol tetraether lipids (membrane spanning) with 0 to 4 cyclopentane moieties and archaeol, with trace amounts of hydroxy archaeol. The dominant quinone was MK-7 : 7. The genome size of M1T was 1.67 Mbp with a G+C content of 39.76 mol%, and both characteristics were well within the common range for Thermoplasmatales. The phylogenetic analysis based on 16S rRNA gene sequence placed the strain M1T within the order Thermoplasmatales with sequence identities of 90.9, 90.3 and 90.5% to the closest SSU rRNA gene sequences from organisms with validly published names, Thermoplasma acidophilum, Thermoplasma volcanium and Thermogymnomonas acidicola, respectively. Based on the results of our genomic, phylogenetic, physiological and chemotaxonomic studies, we propose that strain M1T (=DSM 116605T=JCM 36570T) represents a new genus and species, Oxyplasma meridianum gen. nov., sp. nov., within the order Thermoplasmatales.


Asunto(s)
Composición de Base , ADN de Archaea , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN de Archaea/genética , Italia , Thermoplasmales/genética , Thermoplasmales/clasificación , Thermoplasmales/aislamiento & purificación , Sedimentos Geológicos/microbiología , Genoma Arqueal
2.
Front Microbiol ; 15: 1359991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827155

RESUMEN

The general trend in biomining (i.e., bioleaching and biooxidation) is the use of media with high concentrations of the nutrients (nitrogen as ammonium, phosphorous as phosphate, and K), which are considered to be essential for microbial growth. The depletion of any of the nutrients would affect negatively the bioleaching (and biooxidation) capacity of the microorganisms, so the formulation of the different media ensures that there is a surplus of nutrients. However, some of these nutrients (e.g., phosphate, K) may be already present in the ore and are made available to the microorganisms when the ore is exposed to the low-pH media used during bioleaching. The effect of phosphate addition (109 mg/L) and depletion on the bioleaching of low-grade sulfidic ore alongside the determination of ammonium (i.e., 25 mg/L, 50 mg/L, 109 mg/L, 409 mg/L, and 874 g/L) requirements were studied. The results of the experiments presented showed that the addition of phosphate did not have any effect on the bioleaching of the low-grade sulfidic ore while the addition of ammonium was necessary to obtain higher redox potentials (>650 mV vs. Ag/AgCl) and higher metal (Co, Cu, Ni, and Zn) dissolutions. Temperature was the factor that shaped the microbial communities, at 30°C, the microbial community at the end of all the experiments was dominated by Acidithiobacillus sp. as well as at 42°C, except when nutrients were not added and Sulfobacillus sp. was the dominant microorganism. At 55°C, DNA recovery was unsuccessful, and at 60°C, the microbial communities were dominated by Sulfolobus sp. In conclusion, the amount of nutrients in bioleaching could be reduced significantly to achieve the redox potentials and metal dissolution desired in bioleaching without affecting the microbial communities and bioleaching efficiencies.

3.
Clin Proteomics ; 21(1): 37, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778280

RESUMEN

BACKGROUND: Information on the microbiome's human pathways and active members that can affect SARS-CoV-2 susceptibility and pathogenesis in the salivary proteome is very scarce. Here, we studied a unique collection of samples harvested from April to June 2020 from unvaccinated patients. METHODS: We compared 10 infected and hospitalized patients with severe (n = 5) and moderate (n = 5) coronavirus disease (COVID-19) with 10 uninfected individuals, including non-COVID-19 but susceptible individuals (n = 5) and non-COVID-19 and nonsusceptible healthcare workers with repeated high-risk exposures (n = 5). RESULTS: By performing high-throughput proteomic profiling in saliva samples, we detected 226 unique differentially expressed (DE) human proteins between groups (q-value ≤ 0.05) out of 3376 unambiguously identified proteins (false discovery rate ≤ 1%). Major differences were observed between the non-COVID-19 and nonsusceptible groups. Bioinformatics analysis of DE proteins revealed human proteomic signatures related to inflammatory responses, central cellular processes, and antiviral activity associated with the saliva of SARS-CoV-2-infected patients (p-value ≤ 0.0004). Discriminatory biomarker signatures from human saliva include cystatins, protective molecules present in the oral cavity, calprotectins, involved in cell cycle progression, and histones, related to nucleosome functions. The expression levels of two human proteins related to protein transport in the cytoplasm, DYNC1 (p-value, 0.0021) and MAPRE1 (p-value, 0.047), correlated with angiotensin-converting enzyme 2 (ACE2) plasma activity. Finally, the proteomes of microorganisms present in the saliva samples showed 4 main microbial functional features related to ribosome functioning that were overrepresented in the infected group. CONCLUSION: Our study explores potential candidates involved in pathways implicated in SARS-CoV-2 susceptibility, although further studies in larger cohorts will be necessary.

4.
Environ Microbiome ; 19(1): 27, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685074

RESUMEN

BACKGROUND: Plastics pollution and antimicrobial resistance (AMR) are two major environmental threats, but potential connections between plastic associated biofilms, the 'plastisphere', and dissemination of AMR genes are not well explored. RESULTS: We conducted mesocosm experiments tracking microbial community changes on plastic surfaces transitioning from wastewater effluent to marine environments over 16 weeks. Commonly used plastics, polypropylene (PP), high density polyethylene (HDPE), low density polyethylene (LDPE) and polyethylene terephthalate (PET) incubated in wastewater effluent, river water, estuarine water, and in the seawater for 16 weeks, were analysed via 16S rRNA gene amplicon and shotgun metagenome sequencing. Within one week, plastic-colonizing communities shifted from wastewater effluent-associated microorganisms to marine taxa, some members of which (e.g. Oleibacter-Thalassolituus and Sphingomonas spp., on PET, Alcanivoracaceae on PET and PP, or Oleiphilaceae, on all polymers), were selectively enriched from levels undetectable in the starting communities. Remarkably, microbial biofilms were also susceptible to parasitism, with Saprospiraceae feeding on biofilms at late colonisation stages (from week 6 onwards), while Bdellovibrionaceae were prominently present on HDPE from week 2 and LDPE from day 1. Relative AMR gene abundance declined over time, and plastics did not become enriched for key AMR genes after wastewater exposure. CONCLUSION: Although some resistance genes occurred during the mesocosm transition on plastic substrata, those originated from the seawater organisms. Overall, plastic surfaces incubated in wastewater did not act as hotspots for AMR proliferation in simulated marine environments.

6.
Nat Med ; 29(7): 1738-1749, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37464040

RESUMEN

Human papillomavirus can cause preinvasive, high-grade squamous intraepithelial lesions (HSILs) as precursors to cancer in the anogenital area, and the microbiome is suggested to be a contributing factor. Men who have sex with men (MSM) living with human immunodeficiency virus (HIV) have a high risk of anal cancer, but current screening strategies for HSIL detection lack specificity. Here, we investigated the anal microbiome to improve HSIL screening. We enrolled participants living with HIV, divided into a discovery (n = 167) and validation cohort (n = 46), and who were predominantly (93.9%) cisgender MSM undergoing HSIL screening with high-resolution anoscopy and anal biopsies. We identified no microbiome composition signatures associated with HSILs, but elevated levels of microbiome-encoded proteins producing succinyl coenzyme A and cobalamin were significantly associated with HSILs in both cohorts. Measurement of these candidate biomarkers alone in anal cytobrushes outperformed anal cytology as a diagnostic indicator for HSILs, increasing the sensitivity from 91.2% to 96.6%, the specificity from 34.1% to 81.8%, and reclassifying 82% of false-positive results as true negatives. We propose that these two microbiome-derived biomarkers may improve the current strategy of anal cancer screening.


Asunto(s)
Neoplasias del Ano , Infecciones por VIH , Minorías Sexuales y de Género , Masculino , Humanos , Homosexualidad Masculina , Infecciones por VIH/complicaciones , Vitamina B 12 , Detección Precoz del Cáncer/métodos , Neoplasias del Ano/diagnóstico , Neoplasias del Ano/patología , Biomarcadores , Papillomaviridae
7.
Environ Microbiome ; 18(1): 61, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464403

RESUMEN

BACKGROUND: Archaea of the order Thermoplasmatales are widely distributed in natural acidic areas and are amongst the most acidophilic prokaryotic organisms known so far. These organisms are difficult to culture, with currently only six genera validly published since the discovery of Thermoplasma acidophilum in 1970. Moreover, known great diversity of uncultured Thermoplasmatales represents microbial dark matter and underlines the necessity of efforts in cultivation and study of these archaea. Organisms from the order Thermoplasmatales affiliated with the so-called "alphabet-plasmas", and collectively dubbed "E-plasma", were the focus of this study. These archaea were found predominantly in the hyperacidic site PM4 of Parys Mountain, Wales, UK, making up to 58% of total metagenomic reads. However, these archaea escaped all cultivation attempts. RESULTS: Their genome-based metabolism revealed its peptidolytic potential, in line with the physiology of the previously studied Thermoplasmatales isolates. Analyses of the genome and evolutionary history reconstruction have shown both the gain and loss of genes, that may have contributed to the success of the "E-plasma" in hyperacidic environment compared to their community neighbours. Notable genes among them are involved in the following molecular processes: signal transduction, stress response and glyoxylate shunt, as well as multiple copies of genes associated with various cellular functions; from energy production and conversion, replication, recombination, and repair, to cell wall/membrane/envelope biogenesis and archaella production. History events reconstruction shows that these genes, acquired by putative common ancestors, may determine the evolutionary and functional divergences of "E-plasma", which is much more developed than other representatives of the order Thermoplasmatales. In addition, the ancestral hereditary reconstruction strongly indicates the placement of Thermogymnomonas acidicola close to the root of the Thermoplasmatales. CONCLUSIONS: This study has analysed the metagenome-assembled genome of "E-plasma", which denotes the basis of their predominance in Parys Mountain environmental microbiome, their global ubiquity, and points into the right direction of further cultivation attempts. The results suggest distinct evolutionary trajectories of organisms comprising the order Thermoplasmatales, which is important for the understanding of their evolution and lifestyle.

8.
J Hazard Mater ; 458: 131932, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37390687

RESUMEN

Over the last 50 years, the intense use of agricultural plastic in the form of mulch films has led to an accumulation of plastic in soil, creating a legacy of plastic in agricultural fields. Plastic often contains additives, however it is still largely unknown how these compounds affect soil properties, potentially influencing or masking effects of the plastic itself. Therefore, the aim of this study was to investigate the effects of pure plastics of varying sizes and concentrations, to improve our understanding of plastic-only interactions within soil-plant mesocosms. Maize (Zea mays L.) was grown over eight weeks following the addition of micro and macro low-density polyethylene and polypropylene at increasing concentrations (equivalent to 1, 10, 25, and 50 years mulch film use) and the effects of plastic on key soil and plant properties were measured. We found the effect of both macro and microplastic on soil and plant health is negligible in the short-term (1 to <10 years). However, ≥ 10 years of plastic application for both plastic types and sizes resulted in a clear negative effect on plant growth and microbial biomass. This study provides vital insight into the effect of both macro and microplastics on soil and plant properties.


Asunto(s)
Plásticos , Polietileno , Biomasa , Agricultura , Suelo , Microplásticos , Zea mays , Plantas
9.
Nat Commun ; 14(1): 1045, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828822

RESUMEN

Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme response in all cases. Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility confirms the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response.


Asunto(s)
Microbiota , Bacterias , Agua de Mar/microbiología , Temperatura , Adaptación Fisiológica , Esterasas/química
10.
Appl Environ Microbiol ; 89(2): e0170422, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36719236

RESUMEN

Hydrothermal vents are geographically widespread and host microorganisms with robust enzymes useful in various industrial applications. We examined microbial communities and carboxylesterases of two terrestrial hydrothermal vents of the volcanic island of Ischia (Italy) predominantly composed of Firmicutes, Proteobacteria, and Bacteroidota. High-temperature enrichment cultures with the polyester plastics polyhydroxybutyrate and polylactic acid (PLA) resulted in an increase of Thermus and Geobacillus species and to some extent Fontimonas and Schleiferia species. The screening at 37 to 70°C of metagenomic fosmid libraries from above enrichment cultures identified three hydrolases (IS10, IS11, and IS12), all derived from yet-uncultured Chloroflexota and showing low sequence identity (33 to 56%) to characterized enzymes. Enzymes expressed in Escherichia coli exhibited maximal esterase activity at 70 to 90°C, with IS11 showing the highest thermostability (90% activity after 20-min incubation at 80°C). IS10 and IS12 were highly substrate promiscuous and hydrolyzed all 51 monoester substrates tested. Enzymes were active with PLA, polyethylene terephthalate model substrate, and mycotoxin T-2 (IS12). IS10 and IS12 had a classical α/ß-hydrolase core domain with a serine hydrolase catalytic triad (Ser155, His280, and Asp250) in their hydrophobic active sites. The crystal structure of IS11 resolved at 2.92 Å revealed the presence of a N-terminal ß-lactamase-like domain and C-terminal lipocalin domain. The catalytic cleft of IS11 included catalytic Ser68, Lys71, Tyr160, and Asn162, whereas the lipocalin domain enclosed the catalytic cleft like a lid and contributed to substrate binding. Our study identified novel thermotolerant carboxylesterases with a broad substrate range, including polyesters and mycotoxins, for potential applications in biotechnology. IMPORTANCE High-temperature-active microbial enzymes are important biocatalysts for many industrial applications, including recycling of synthetic and biobased polyesters increasingly used in textiles, fibers, coatings and adhesives. Here, we identified three novel thermotolerant carboxylesterases (IS10, IS11, and IS12) from high-temperature enrichment cultures from Ischia hydrothermal vents and incubated with biobased polymers. The identified metagenomic enzymes originated from uncultured Chloroflexota and showed low sequence similarity to known carboxylesterases. Active sites of IS10 and IS12 had the largest effective volumes among the characterized prokaryotic carboxylesterases and exhibited high substrate promiscuity, including hydrolysis of polyesters and mycotoxin T-2 (IS12). Though less promiscuous than IS10 and IS12, IS11 had a higher thermostability with a high temperature optimum (80 to 90°C) for activity and hydrolyzed polyesters, and its crystal structure revealed an unusual lipocalin domain likely involved in substrate binding. The polyesterase activity of these enzymes makes them attractive candidates for further optimization and potential application in plastics recycling.


Asunto(s)
Hidrolasas de Éster Carboxílico , Respiraderos Hidrotermales , Hidrolasas de Éster Carboxílico/metabolismo , Polímeros , Hidrolasas/metabolismo , Poliésteres , Plásticos , Especificidad por Sustrato
11.
Microorganisms ; 10(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36144296

RESUMEN

The Parys Mountain copper mine (Wales, UK) contains a wide range of discrete environmental microniches with various physicochemical conditions that shape microbial community composition. Our aim was to assess the microbial community in the sediments and overlying water column in an acidic mine drainage (AMD) site containing abundant filamentous biogenic growth via application of a combination of chemical analysis and taxonomic profiling using 16S rRNA gene amplicon sequencing. Our results were then compared to previously studied sites at Parys Mt. Overall, the sediment microbiome showed a dominance of bacteria over archaea, particularly those belonging to Proteobacteria (genera Acidiphilium and Acidisphaera), Acidobacteriota (subgroup 1), Chloroflexota (AD3 cluster), Nitrospirota (Leptospirillum) and the uncultured Planctomycetota/CPIa-3 termite group. Archaea were only present in the sediment in small quantities, being represented by the Terrestrial Miscellaneous Euryarchaeota Group (TMEG), Thermoplasmatales and Ca. Micrarchaeota (Ca. Micracaldota). Bacteria, mostly of the genera Acidiphilium and Leptospirillum, also dominated within the filamentous streamers while archaea were largely absent. This study found pH and dissolved solutes to be the most important parameters correlating with relative proportions of bacteria to archaea in an AMD environment and revealed the abundance patterns of native acidophilic prokaryotes inhabiting Parys Mt sites and their niche specificities.

12.
Curr Opin Biotechnol ; 73: 337-345, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34768202

RESUMEN

According to current estimates, the annual volume of crude oil entering the ocean due to both anthropogenic activities and naturally occurring seepages reaches approximately 8.3 million metric tons. Huge discharges from accidents have caused large-scale environmental disasters with extensive damage to the marine ecosystem. The natural clean-up of petroleum spills in marine environments is carried out primarily by naturally occurring obligate hydrocarbonoclastic bacteria (OHCB). The natural hosts of OHCB include a range of marine primary producers, unicellular photosynthetic eukaryotes and cyanobacteria, which have been documented as both, suppliers of hydrocarbon-like compounds that fuel the 'cryptic' hydrocarbon cycle and as a source of isolation of new OHCB. A very new body of evidence suggests that OHCB are not only the active early stage colonizers of plastics and hence the important component of the ocean's 'plastisphere' but also encode an array of enzymes experimentally proven to act on petrochemical and bio-based polymers.


Asunto(s)
Cianobacterias , Petróleo , Biodegradación Ambiental , Ecosistema , Petróleo/microbiología , Agua de Mar/química
13.
Comput Struct Biotechnol J ; 19: 2307-2317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995922

RESUMEN

Our understanding of enzymes with high substrate ambiguity remains limited because their large active sites allow substrate docking freedom to an extent that seems incompatible with stereospecificity. One possibility is that some of these enzymes evolved a set of evolutionarily fitted sequence positions that stringently allow switching substrate ambiguity and chiral specificity. To explore this hypothesis, we targeted for mutation a serine ester hydrolase (EH3) that exhibits an impressive 71-substrate repertoire but is not stereospecific (e.e. 50%). We used structural actions and the computational evolutionary trace method to explore specificity-swapping sequence positions and hypothesized that position I244 was critical. Driven by evolutionary action analysis, this position was substituted to leucine, which together with isoleucine appears to be the amino acid most commonly present in the closest homologous sequences (max. identity, ca. 67.1%), and to phenylalanine, which appears in distant homologues. While the I244L mutation did not have any functional consequences, the I244F mutation allowed the esterase to maintain a remarkable 53-substrate range while gaining stereospecificity properties (e.e. 99.99%). These data support the possibility that some enzymes evolve sequence positions that control the substrate scope and stereospecificity. Such residues, which can be evolutionarily screened, may serve as starting points for further designing substrate-ambiguous, yet chiral-specific, enzymes that are greatly appreciated in biotechnology and synthetic chemistry.

15.
FEMS Microbiol Ecol ; 97(2)2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264383

RESUMEN

Filterable microorganisms participate in dissolved organic carbon (DOC) cycling in freshwater systems, however their exact functional role remains unknown. We determined the taxonomic identity and community dynamics of prokaryotic microbiomes in the 0.22 µm-filtered fraction and unfiltered freshwater from the Conwy River (North Wales, UK) in microcosms and, using targeted metabolomics and 14C-labelling, examined their role in the utilization of amino acids, organic acids and sugars spiked at environmentally-relevant (nanomolar) concentrations. To identify changes in community structure, we used 16S rRNA amplicon and shotgun sequencing. Unlike the unfiltered water samples where the consumption of DOC was rapid, the filtered fraction showed a 3-day lag phase before the consumption started. Analysis of functional categories of clusters of orthologous groups of proteins (COGs) showed that COGs associated with energy production increased in number in both fractions with substrate addition. The filtered fraction utilized low-molecular-weight (LMW) DOC at much slower rates than the whole community. Addition of nanomolar concentrations of LMW DOC did not measurably influence the composition of the microbial community nor the rate of consumption across all substrate types in either fraction. We conclude that due to their low activity, filterable microorganisms play a minor role in LMW DOC processing within a short residence time of lotic freshwater systems.


Asunto(s)
Microbiota , Compuestos Orgánicos , Carbono , Agua Dulce , ARN Ribosómico 16S/genética , Ríos
16.
Front Microbiol ; 11: 576520, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329440

RESUMEN

Parys Mountain or Mynydd Parys (Isle of Anglesey, United Kingdom) is a mine-impacted environment, which accommodates a variety of acidophilic organisms. Our previous research of water and sediments from one of the surface acidic streams showed a high proportion of archaea in the total microbial community. To understand the spatial distribution of archaea, we sampled cores (0-20 cm) of sediment and conducted chemical analyses and taxonomic profiling of microbiomes using 16S rRNA gene amplicon sequencing in different core layers. The taxonomic affiliation of sequencing reads indicated that archaea represented between 6.2 and 54% of the microbial community at all sediment depths. Majority of archaea were associated with the order Thermoplasmatales, with the most abundant group of sequences being clustered closely with the phylotype B_DKE, followed by "E-plasma," "A-plasma," other yet uncultured Thermoplasmatales with Ferroplasma and Cuniculiplasma spp. represented in minor proportions. Thermoplasmatales were found at all depths and in the whole range of chemical conditions with their abundance correlating with sediment Fe, As, Cr, and Mn contents. The bacterial microbiome component was largely composed in all layers of sediment by members of the phyla Proteobacteria, Actinobacteria, Nitrospirae, Firmicutes, uncultured Chloroflexi (AD3 group), and Acidobacteria. This study has revealed a high abundance of Thermoplasmatales in acid mine drainage-affected sediment layers and pointed at these organisms being the main contributors to carbon, and probably to iron and sulfur cycles in this ecosystem.

17.
ACS Nano ; 14(12): 17652-17664, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33306346

RESUMEN

Owing to their outstanding catalytic properties, enzymes represent powerful tools for carrying out a wide range of (bio)chemical transformations with high proficiency. In this context, enzymes with high biocatalytic promiscuity are somewhat neglected. Here, we demonstrate that a meticulous modification of a synthetic shell that surrounds an immobilized enzyme possessing broad substrate specificity allows the resulting nanobiocatalyst to be endowed with enantioselective properties while maintaining a high level of substrate promiscuity. Our results show that control of the enzyme nano-environment enables tuning of both substrate specificity and enantioselectivity. Further, we demonstrate that our strategy of enzyme supramolecular engineering allows the enzyme to be endowed with markedly enhanced stability in an organic solvent (i.e., acetonitrile). The versatility of the method was assessed with two additional substrate-promiscuous and structurally different enzymes, for which improvements in enantioselectivity and stability were confirmed. We expect this method to promote the use of supramolecularly engineered promiscuous enzymes in industrially relevant biocatalytic processes.

18.
Front Microbiol ; 11: 572931, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193176

RESUMEN

Marine hydrocarbon-degrading bacteria play an important role in natural petroleum biodegradation processes and were initially associated with man-made oil spills or natural seeps. There is no full clarity though on what, in the absence of petroleum, their natural niches are. Few studies pointed at some marine microalgae that produce oleophilic compounds (alkanes, long-chain fatty acids, and alcohols) as potential natural hosts of these bacteria. We established Dansk crude oil-based enrichment cultures with photobioreactor-grown marine microalgae cultures Pavlova lutheri and Nannochloropsis oculata and analyzed the microbial succession using cultivation and SSU (16S) rRNA amplicon sequencing. We found that petroleum enforced a strong selection for members of Alpha- and Gamma-proteobacteria in both enrichment cultures with the prevalence of Alcanivorax and Marinobacter spp., well-known hydrocarbonoclastic bacteria. In total, 48 non-redundant bacterial strains were isolated and identified to represent genera Alcanivorax, Marinobacter, Thalassospira, Hyphomonas, Halomonas, Marinovum, Roseovarius, and Oleibacter, which were abundant in sequencing reads in both crude oil enrichments. Our assessment of public databases demonstrated some overlaps of geographical sites of isolation of Nannochloropsis and Pavlova with places of molecular detection and isolation of Alcanivorax and Marinobacter spp. Our study suggests that these globally important hydrocarbon-degrading bacteria are associated with P. lutheri and N. oculata.

19.
Microorganisms ; 8(5)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438588

RESUMEN

The archaeon Cuniculiplasma divulgatum is ubiquitous in acidic environments with low-to-moderate temperatures. However, molecular mechanisms underlying its ability to thrive at lower temperatures remain unexplored. Using mass spectrometry (MS)-based proteomics, we analysed the effect of short-term (3 h) exposure to cold. The C. divulgatum genome encodes 2016 protein-coding genes, from which 819 proteins were identified in the cells grown under optimal conditions. In line with the peptidolytic lifestyle of C. divulgatum, its intracellular proteome revealed the abundance of proteases, ABC transporters and cytochrome C oxidase. From 747 quantifiable polypeptides, the levels of 582 proteins showed no change after the cold shock, whereas 104 proteins were upregulated suggesting that they might be contributing to cold adaptation. The highest increase in expression appeared in low-abundance (0.001-0.005 fmol%) proteins for polypeptides' hydrolysis (metal-dependent hydrolase), oxidation of amino acids (FAD-dependent oxidoreductase), pyrimidine biosynthesis (aspartate carbamoyltransferase regulatory chain proteins), citrate cycle (2-oxoacid ferredoxin oxidoreductase) and ATP production (V type ATP synthase). Importantly, the cold shock induced a substantial increase (6% and 9%) in expression of the most-abundant proteins, thermosome beta subunit and glutamate dehydrogenase. This study has outlined potential mechanisms of environmental fitness of Cuniculiplasma spp. allowing them to colonise acidic settings at low/moderate temperatures.

20.
Aging Cell ; 19(1): e13063, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31730262

RESUMEN

Composition of the gut microbiota changes during ageing, but questions remain about whether age is also associated with deficits in microbiome function and whether these changes occur sharply or progressively. The ability to define these deficits in populations of different ages may help determine a chronological age threshold at which deficits occur and subsequently identify innovative dietary strategies for active and healthy ageing. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics in three well-defined age groups consisting of 30 healthy volunteers, namely, ten infants, ten adults and ten elderly individuals. Samples from each volunteer at intervals of up to 6 months (n = 83 samples) were used for validation. Ageing gradually increases the diversity of gut bacteria that actively synthesize proteins, that is by 1.4-fold from infants to elderly individuals. An analysis of functional deficits consistently identifies a relationship between tryptophan and indole metabolism and ageing (p < 2.8e-8 ). Indeed, the synthesis of proteins involved in tryptophan and indole production and the faecal concentrations of these metabolites are directly correlated (r2  > .987) and progressively decrease with age (r2  > .948). An age threshold for a 50% decrease is observed ca. 11-31 years old, and a greater than 90% reduction is observed from the ages of 34-54 years. Based on recent investigations linking tryptophan with abundance of indole and other "healthy" longevity molecules and on the results from this small cohort study, dietary interventions aimed at manipulating tryptophan deficits since a relatively "young" age of 34 and, particularly, in the elderly are recommended.


Asunto(s)
Microbiota/fisiología , Proteómica/métodos , Adulto , Factores de Edad , Anciano , Envejecimiento , Preescolar , Femenino , Voluntarios Sanos , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA