Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
2.
Microb Genom ; 10(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38529900

RESUMEN

Multi-drug-resistant Neisseria gonorrhoeae infection is a significant public health risk. Rapidly detecting N. gonorrhoeae and antimicrobial-resistant (AMR) determinants by metagenomic sequencing of urine is possible, although high levels of host DNA and overgrowth of contaminating species hamper sequencing and limit N. gonorrhoeae genome coverage. We performed Nanopore sequencing of nucleic acid amplification test-positive urine samples and culture-positive urethral swabs with and without probe-based target enrichment, using a custom SureSelect panel, to investigate whether selective enrichment of N. gonorrhoeae DNA improves detection of both species and AMR determinants. Probes were designed to cover the entire N. gonorrhoeae genome, with tenfold enrichment of probes covering selected AMR determinants. Multiplexing was tested in a subset of samples. The proportion of sequence bases classified as N. gonorrhoeae increased in all samples after enrichment, from a median (IQR) of 0.05 % (0.01-0.1 %) to 76 % (42-82 %), giving a corresponding median improvement in fold genome coverage of 365 times (112-720). Over 20-fold coverage, required for robust AMR determinant detection, was achieved in 13/15(87 %) samples, compared to 2/15(13 %) without enrichment. The four samples multiplexed together also achieved >20-fold genome coverage. Coverage of AMR determinants was sufficient to predict resistance conferred by changes in chromosomal genes, where present, and genome coverage also enabled phylogenetic relationships to be reconstructed. Probe-based target enrichment can improve N. gonorrhoeae genome coverage when sequencing DNA extracts directly from urine or urethral swabs, allowing for detection of AMR determinants. Additionally, multiplexing prior to enrichment provided enough genome coverage for AMR detection and reduces the costs associated with this method.


Asunto(s)
Antiinfecciosos , Gonorrea , Secuenciación de Nanoporos , Humanos , Neisseria gonorrhoeae/genética , Antibacterianos/farmacología , Filogenia , Farmacorresistencia Bacteriana/genética , Gonorrea/diagnóstico , ADN
3.
Nat Commun ; 15(1): 1612, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383544

RESUMEN

Plasmids carry genes conferring antimicrobial resistance and other clinically important traits, and contribute to the rapid dissemination of such genes. Previous studies using complete plasmid assemblies, which are essential for reliable inference, have been small and/or limited to plasmids carrying antimicrobial resistance genes (ARGs). In this study, we sequenced 1,880 complete plasmids from 738 isolates from bloodstream infections in Oxfordshire, UK. The bacteria had been originally isolated in 2009 (194 isolates) and 2018 (368 isolates), plus a stratified selection from intervening years (176 isolates). We demonstrate that plasmids are largely, but not entirely, constrained to a single host species, although there is substantial overlap between species of plasmid gene-repertoire. Most ARGs are carried by a relatively small number of plasmid groups with biological features that are predictable. Plasmids carrying ARGs (including those encoding carbapenemases) share a putative 'backbone' of core genes with those carrying no such genes. These findings suggest that future surveillance should, in addition to tracking plasmids currently associated with clinically important genes, focus on identifying and monitoring the dissemination of high-risk plasmid groups with the potential to rapidly acquire and disseminate these genes.


Asunto(s)
Antibacterianos , Bacterias , Plásmidos/genética , Bacterias/genética
4.
ISME Commun ; 3(1): 113, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857858

RESUMEN

Deserts represent an extreme challenge for photosynthetic life. Despite their aridity, they are often inhabited by diverse microscopic communities of cyanobacteria. These organisms are commonly found in lithic habitats, where they are partially sheltered from extremes of temperature and UV radiation. However, living under the rock surface imposes additional constraints, such as limited light availability, and enrichment of longer wavelengths than are typically usable for oxygenic photosynthesis. Some cyanobacteria from the genus Chroococcidiopsis can use this light to photosynthesize, in a process known as far-red light photoacclimation, or FaRLiP. This genus has commonly been reported from both hot and cold deserts. However, not all Chroococcidiopsis strains carry FaRLiP genes, thus motivating our study into the interplay between FaRLiP and extreme lithic environments. The abundance of sequence data and strains provided the necessary material for an in-depth phylogenetic study, involving spectroscopy, microscopy, and determination of pigment composition, as well as gene and genome analyses. Pigment analyses revealed the presence of red-shifted chlorophylls d and f in all FaRLiP strains tested. In addition, eight genus-level taxa were defined within the encompassing Chroococcidiopsidales, clarifying the phylogeny of this long-standing polyphyletic order. FaRLiP is near universally present in a generalist genus identified in a wide variety of environments, Chroococcidiopsis sensu stricto, while it is rare or absent in closely related, extremophile taxa, including those preferentially inhabiting deserts. This likely reflects the evolutionary process of gene loss in specialist lineages.

5.
Elife ; 122023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961866

RESUMEN

Plasmids enable the dissemination of antimicrobial resistance (AMR) in common Enterobacterales pathogens, representing a major public health challenge. However, the extent of plasmid sharing and evolution between Enterobacterales causing human infections and other niches remains unclear, including the emergence of resistance plasmids. Dense, unselected sampling is essential to developing our understanding of plasmid epidemiology and designing appropriate interventions to limit the emergence and dissemination of plasmid-associated AMR. We established a geographically and temporally restricted collection of human bloodstream infection (BSI)-associated, livestock-associated (cattle, pig, poultry, and sheep faeces, farm soils) and wastewater treatment work (WwTW)-associated (influent, effluent, waterways upstream/downstream of effluent outlets) Enterobacterales. Isolates were collected between 2008 and 2020 from sites <60 km apart in Oxfordshire, UK. Pangenome analysis of plasmid clusters revealed shared 'backbones', with phylogenies suggesting an intertwined ecology where well-conserved plasmid backbones carry diverse accessory functions, including AMR genes. Many plasmid 'backbones' were seen across species and niches, raising the possibility that plasmid movement between these followed by rapid accessory gene change could be relatively common. Overall, the signature of identical plasmid sharing is likely to be a highly transient one, implying that plasmid movement might be occurring at greater rates than previously estimated, raising a challenge for future genomic One Health studies.


Asunto(s)
Gammaproteobacteria , Sepsis , Humanos , Animales , Bovinos , Porcinos , Ovinos/genética , Escherichia coli/genética , Ganado/genética , Aguas Residuales , Plásmidos/genética , Klebsiella pneumoniae/genética , Reino Unido , Antibacterianos , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana
6.
Commun Med (Lond) ; 2: 101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968045

RESUMEN

Background: Gram-negative organisms are common causes of bloodstream infection (BSI) during the neonatal period and early childhood. Whilst several large studies have characterised these isolates in adults, equivalent data (particularly incorporating whole genome sequencing) is lacking in the paediatric population. Methods: We perform an epidemiological and sequencing based analysis of Gram-negative bloodstream infections (327 isolates (296 successfully sequenced) from 287 patients) in children <18 years old between 2008 and 2018 in Oxfordshire, UK. Results: Here we show that the burden of infection lies predominantly in neonates and that most infections are caused by Escherichia coli, Klebsiella spp. and Enterobacter hormaechei. There is no evidence in our setting that the proportion of antimicrobial resistant isolates is increasing in the paediatric population although we identify some evidence of sub-breakpoint increases in gentamicin resistance. The population structure of E. coli BSI isolates in neonates and children mirrors that in adults with a predominance of STs 131/95/73/69 and the same proportions of O-antigen serotypes. In most cases in our setting there is no evidence of transmission/point-source acquisition and we demonstrate the utility of whole genome sequencing to refute a previously suspected outbreak. Conclusions: Our findings support continued use of current empirical treatment guidelines and suggest that O-antigen targeted vaccines may have a role in reducing the incidence of neonatal sepsis.

7.
Genome Med ; 13(1): 144, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34479643

RESUMEN

BACKGROUND: The incidence of Gram-negative bloodstream infections (BSIs), predominantly caused by Escherichia coli and Klebsiella species, continues to increase; however, the causes of this are unclear and effective interventions are therefore hard to design. METHODS: In this study, we sequenced 3468 unselected isolates over a decade in Oxfordshire (UK) and linked this data to routinely collected electronic healthcare records and mandatory surveillance reports. We annotated genomes for clinically relevant genes, contrasting the distribution of these within and between species, and compared incidence trends over time using stacked negative binomial regression. RESULTS: We demonstrate that the observed increases in E. coli incidence were not driven by the success of one or more sequence types (STs); instead, four STs continue to dominate a stable population structure, with no evidence of adaptation to hospital/community settings. Conversely in Klebsiella spp., most infections are caused by sporadic STs with the exception of a local drug-resistant outbreak strain (ST490). Virulence elements are highly structured by ST in E. coli but not Klebsiella spp. where they occur in a diverse spectrum of STs and equally across healthcare and community settings. Most clinically hypervirulent (i.e. community-onset) Klebsiella BSIs have no known acquired virulence loci. Finally, we demonstrate a diverse but largely genus-restricted mobilome with close associations between antimicrobial resistance (AMR) genes and insertion sequences but not typically specific plasmid replicon types, consistent with the dissemination of AMR genes being highly contingent on smaller mobile genetic elements (MGEs). CONCLUSIONS: Our large genomic study highlights distinct differences in the molecular epidemiology of E. coli and Klebsiella BSIs and suggests that no single specific pathogen genetic factors (e.g. AMR/virulence genes/sequence type) are likely contributing to the increasing incidence of BSI overall, that association with AMR genes in E. coli is a contributor to the increasing number of E. coli BSIs, and that more attention should be given to AMR gene associations with non-plasmid MGEs to try and understand horizontal gene transfer networks.


Asunto(s)
Infecciones por Escherichia coli/epidemiología , Escherichia coli/genética , Infecciones por Klebsiella/epidemiología , Klebsiella/genética , Epidemiología Molecular , Sepsis/epidemiología , Antibacterianos/farmacología , Bacteriemia/epidemiología , Farmacorresistencia Bacteriana Múltiple , Humanos , Incidencia , Klebsiella pneumoniae/genética , Estudios Longitudinales , Plásmidos , Sepsis/microbiología , Reino Unido/epidemiología , Virulencia/genética , Secuenciación Completa del Genoma
8.
Sci Adv ; 7(15)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33837077

RESUMEN

Escherichia coli and other Enterobacteriaceae are diverse species with "open" pangenomes, where genes move intra- and interspecies via horizontal gene transfer. However, most analyses focus on clinical isolates. The pangenome dynamics of natural populations remain understudied, despite their suggested role as reservoirs for antimicrobial resistance (AMR) genes. Here, we analyze near-complete genomes for 827 Enterobacteriaceae (553 Escherichia and 274 non-Escherichia spp.) with 2292 circularized plasmids in total, collected from 19 locations (livestock farms and wastewater treatment works in the United Kingdom) within a 30-km radius at three time points over a year. We find different dynamics for chromosomal and plasmid-borne genes. Plasmids have a higher burden of AMR genes and insertion sequences, and AMR-gene-carrying plasmids show evidence of being under stronger selective pressure. Environmental niche and local geography both play a role in shaping plasmid dynamics. Our results highlight the importance of local strategies for controlling the spread of AMR.

9.
ISME J ; 15(8): 2322-2335, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33649550

RESUMEN

F-type plasmids are diverse and of great clinical significance, often carrying genes conferring antimicrobial resistance (AMR) such as extended-spectrum ß-lactamases, particularly in Enterobacterales. Organising this plasmid diversity is challenging, and current knowledge is largely based on plasmids from clinical settings. Here, we present a network community analysis of a large survey of F-type plasmids from environmental (influent, effluent and upstream/downstream waterways surrounding wastewater treatment works) and livestock settings. We use a tractable and scalable methodology to examine the relationship between plasmid metadata and network communities. This reveals how niche (sampling compartment and host genera) partition and shape plasmid diversity. We also perform pangenome-style analyses on network communities. We show that such communities define unique combinations of core genes, with limited overlap. Building plasmid phylogenies based on alignments of these core genes, we demonstrate that plasmid accessory function is closely linked to core gene content. Taken together, our results suggest that stable F-type plasmid backbone structures can persist in environmental settings while allowing dramatic variation in accessory gene content that may be linked to niche adaptation. The association of F-type plasmids with AMR may reflect their suitability for rapid niche adaptation.


Asunto(s)
Ganado , beta-Lactamasas , Animales , Antibacterianos , Genómica , Filogenia , Plásmidos/genética , beta-Lactamasas/genética
10.
Clin Infect Dis ; 73(12): 2276-2282, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33411882

RESUMEN

BACKGROUND: The incidence of bloodstream infections (BSIs) caused by Escherichia coli and Klebsiella pneumoniae is increasing, with substantial associated morbidity, mortality, and antimicrobial resistance. Unbiased serotyping studies to guide vaccine target selection are limited. METHODS: We conducted unselected, population-level genomic surveillance of bloodstream E. coli and Klebsiella pneumoniae isolates from 2008 to 2018 in Oxfordshire, United Kingdom. We supplemented this with an analysis of publicly available global sequencing data (n = 3678). RESULTS: We sequenced 3478 E. coli isolates (3278 passed quality control) and 556 K. pneumoniae isolates (535 [K-antigen] and 549 [O-antigen] passed quality control). The 4 most common E. coli O-antigens (O1/O2/O6/O25) were identified in 1499/3278 isolates; the incidence of these O-types increased over time (incidence rate ratio per year [IRRy] = 1.14, 95% confidence interval [CI]: 1.11-1.16). These O-types accounted for 616/1434 multidrug-resistant (MDR) and 173/256 extended-spectrum beta-lactamase (ESBL)-resistant isolates in Oxfordshire but only 19/90 carbapenem-resistant isolates across all studies. For Klebsiella pneumoniae, the most common O-antigens (O2v2/O1v1/O3b/O1v2) accounted for 410/549 isolates; the incidence of BSIs caused by these also increased annually (IRRy = 1.09; 95% CI: 1.05-1.12). These O-types accounted for 122/148 MDR and 106/123 ESBL isolates in Oxfordshire and 557/734 carbapenem-resistant isolates across all studies. Conversely we observed substantial capsular antigen diversity. Analysis of 3678 isolates from global studies demonstrated the generalizability of these findings. For E. coli, based on serotyping, the ExPEC4V and ExPEC10V vaccines under investigation would cover 46% and 72% of Oxfordshire isolates respectively, and 47% and 71% of MDR isolates. CONCLUSIONS: O-antigen targeted vaccines may be useful in reducing the morbidity, mortality, and antimicrobial resistance associated with E. coli and K. pneumoniae BSIs.


Asunto(s)
Infecciones por Escherichia coli , Infecciones por Klebsiella , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli , Infecciones por Escherichia coli/epidemiología , Genómica , Humanos , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Serogrupo , Desarrollo de Vacunas , beta-Lactamasas/genética
11.
Microb Genom ; 6(11)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33174830

RESUMEN

Hybrid assemblies are highly valuable for studies of Enterobacteriaceae due to their ability to fully resolve the structure of mobile genetic elements, such as plasmids, which are involved in the carriage of clinically important genes (e.g. those involved in antimicrobial resistance/virulence). The widespread application of this technique is currently primarily limited by cost. Recent data have suggested that non-inferior, and even superior, hybrid assemblies can be produced using a fraction of the total output from a multiplexed nanopore [Oxford Nanopore Technologies (ONT)] flowcell run. In this study we sought to determine the optimal minimal running time for flowcells when acquiring reads for hybrid assembly. We then evaluated whether the ONT wash kit might allow users to exploit shorter running times by sequencing multiple libraries per flowcell. After 24 h of sequencing, most chromosomes and plasmids had circularized and there was no benefit associated with longer running times. Quality was similar at 12 h, suggesting that shorter running times are likely to be acceptable for certain applications (e.g. plasmid genomics). The ONT wash kit was highly effective in removing DNA between libraries. Contamination between libraries did not appear to affect subsequent hybrid assemblies, even when the same barcodes were used successively on a single flowcell. Utilizing shorter run times in combination with between-library nuclease washes allows at least 36 Enterobacteriaceae isolates to be sequenced per flowcell, significantly reducing the per-isolate sequencing cost. Ultimately this will facilitate large-scale studies utilizing hybrid assembly, advancing our understanding of the genomics of key human pathogens.


Asunto(s)
ADN Bacteriano/genética , Enterobacteriaceae/genética , Genoma Bacteriano/genética , Secuencias Repetitivas Esparcidas/genética , Plásmidos/genética , Análisis de Secuencia de ADN/métodos , Citometría de Flujo/métodos
12.
Genome Res ; 30(9): 1354-1363, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32873606

RESUMEN

The rise of antimicrobial-resistant Neisseria gonorrhoeae is a significant public health concern. Against this background, rapid culture-independent diagnostics may allow targeted treatment and prevent onward transmission. We have previously shown metagenomic sequencing of urine samples from men with urethral gonorrhea can recover near-complete N. gonorrhoeae genomes. However, disentangling the N. gonorrhoeae genome from metagenomic samples and robustly identifying antimicrobial resistance determinants from error-prone Nanopore sequencing is a substantial bioinformatics challenge. Here, we show an N. gonorrhoeae diagnostic workflow for analysis of metagenomic sequencing data obtained from clinical samples using R9.4.1 Nanopore sequencing. We compared results from simulated and clinical infections with data from known reference strains and Illumina sequencing of isolates cultured from the same patients. We evaluated three Nanopore variant callers and developed a random forest classifier to filter called SNPs. Clair was the most suitable variant caller after SNP filtering. A minimum depth of 20× reads was required to confidently identify resistant determinants over the entire genome. Our findings show that metagenomic Nanopore sequencing can provide reliable diagnostic information in N. gonorrhoeae infection.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Secuenciación de Nanoporos , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/genética , Antibacterianos/farmacología , Genoma Bacteriano , Gonorrea/microbiología , Humanos , Masculino , Metagenómica , Polimorfismo de Nucleótido Simple
13.
J Clin Microbiol ; 58(3)2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31852766

RESUMEN

Empirical gonorrhea treatment at initial diagnosis reduces onward transmission. However, increasing resistance to multiple antibiotics may necessitate waiting for culture-based diagnostics to select an effective treatment. There is a need for same-day culture-free diagnostics that identify infection and detect antimicrobial resistance. We investigated if Nanopore sequencing can detect sufficient Neisseria gonorrhoeae DNA to reconstruct whole genomes directly from urine samples. We used N. gonorrhoeae-spiked urine samples and samples from gonorrhea infections to determine optimal DNA extraction methods that maximize the amount of N. gonorrhoeae DNA sequenced while minimizing contaminating host DNA. In simulated infections, the Qiagen UCP pathogen mini kit provided the highest ratio of N. gonorrhoeae to human DNA and the most consistent results. Depletion of human DNA with saponin increased N. gonorrhoeae yields in simulated infections but decreased yields in clinical samples. In 10 urine samples from men with symptomatic urethral gonorrhea, ≥92.8% coverage of an N. gonorrhoeae reference genome was achieved in all samples, with ≥93.8% coverage breath at ≥10-fold depth in 7 (70%) samples. In simulated infections, if ≥104 CFU/ml of N. gonorrhoeae was present, sequencing of the large majority of the genome was frequently achieved. N. gonorrhoeae could also be detected from urine in cobas PCR medium tubes and from urethral swabs and in the presence of simulated Chlamydia coinfection. Using Nanopore sequencing of urine samples from men with urethral gonorrhea, sufficient data can be obtained to reconstruct whole genomes in the majority of samples without the need for culture.


Asunto(s)
Infecciones por Chlamydia , Gonorrea , Secuenciación de Nanoporos , Chlamydia trachomatis/genética , ADN/aislamiento & purificación , Gonorrea/diagnóstico , Humanos , Masculino , Neisseria gonorrhoeae/genética
14.
Euro Surveill ; 24(10)2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30862336

RESUMEN

We describe detection in the United Kingdom (UK) of the drug-resistant Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate azithromycin resistance. Two female patients developed infection following contact with UK-resident men from the same sexual network linked to travel to Ibiza, Spain. One case failed treatment with ceftriaxone, and azithromycin and gentamicin, before successful treatment with ertapenem. Both isolates had indistinguishable whole-genome sequences. Urgent action is essential to contain this drug-resistant strain.


Asunto(s)
Antibacterianos/farmacología , Azitromicina/uso terapéutico , Ceftriaxona/uso terapéutico , Farmacorresistencia Bacteriana/genética , Ertapenem/uso terapéutico , Gonorrea/tratamiento farmacológico , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/genética , Adulto , Antibacterianos/administración & dosificación , Antibacterianos/uso terapéutico , Azitromicina/administración & dosificación , Ceftriaxona/administración & dosificación , Ertapenem/administración & dosificación , Femenino , Gonorrea/diagnóstico , Humanos , Pruebas de Sensibilidad Microbiana , Neisseria gonorrhoeae/aislamiento & purificación , Polimorfismo de Nucleótido Simple , Resultado del Tratamiento , Reino Unido , Secuenciación Completa del Genoma
15.
Elife ; 82019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30794157

RESUMEN

Pyomyositis is a severe bacterial infection of skeletal muscle, commonly affecting children in tropical regions, predominantly caused by Staphylococcus aureus. To understand the contribution of bacterial genomic factors to pyomyositis, we conducted a genome-wide association study of S. aureus cultured from 101 children with pyomyositis and 417 children with asymptomatic nasal carriage attending the Angkor Hospital for Children, Cambodia. We found a strong relationship between bacterial genetic variation and pyomyositis, with estimated heritability 63.8% (95% CI 49.2-78.4%). The presence of the Panton-Valentine leucocidin (PVL) locus increased the odds of pyomyositis 130-fold (p=10-17.9). The signal of association mapped both to the PVL-coding sequence and to the sequence immediately upstream. Together these regions explained over 99.9% of heritability (95% CI 93.5-100%). Our results establish staphylococcal pyomyositis, like tetanus and diphtheria, as critically dependent on a single toxin and demonstrate the potential for association studies to identify specific bacterial genes promoting severe human disease.


Asunto(s)
Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Leucocidinas/metabolismo , Piomiositis/fisiopatología , Infecciones Estafilocócicas/fisiopatología , Staphylococcus aureus/metabolismo , Factores de Virulencia/metabolismo , Toxinas Bacterianas/genética , Cambodia , Exotoxinas/genética , Estudio de Asociación del Genoma Completo , Humanos , Leucocidinas/genética , Staphylococcus aureus/genética , Factores de Virulencia/genética
16.
Euro Surveill ; 23(27)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29991383

RESUMEN

We describe a gonorrhoea case with combined high-level azithromycin resistance and ceftriaxone resistance. In February 2018, a heterosexual male was diagnosed with gonorrhoea in the United Kingdom following sexual intercourse with a locally resident female in Thailand and failed treatment with ceftriaxone plus doxycycline and subsequently spectinomycin. Resistance arose from two mechanisms combining for the first time in a genetic background similar to a commonly circulating strain. Urgent action is essential to prevent further spread.


Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Gonorrea/tratamiento farmacológico , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/aislamiento & purificación , Espectinomicina/uso terapéutico , Adulto , Antibacterianos/uso terapéutico , Azitromicina/farmacología , Ceftriaxona/farmacología , Doxiciclina/farmacología , Inglaterra , Gonorrea/diagnóstico , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Neisseria gonorrhoeae/genética , Análisis de Secuencia , Tailandia , Viaje , Insuficiencia del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA