Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Commun ; 15(1): 1822, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418445

RESUMEN

Protection from direct human impacts can safeguard marine life, yet ocean warming crosses marine protected area boundaries. Here, we test whether protection offers resilience to marine heatwaves from local to network scales. We examine 71,269 timeseries of population abundances for 2269 reef fish species surveyed in 357 protected versus 747 open sites worldwide. We quantify the stability of reef fish abundance from populations to metacommunities, considering responses of species and functional diversity including thermal affinity of different trophic groups. Overall, protection mitigates adverse effects of marine heatwaves on fish abundance, community stability, asynchronous fluctuations and functional richness. We find that local stability is positively related to distance from centers of high human density only in protected areas. We provide evidence that networks of protected areas have persistent reef fish communities in warming oceans by maintaining large populations and promoting stability at different levels of biological organization.


Asunto(s)
Conservación de los Recursos Naturales , Peces , Animales , Humanos , Peces/fisiología , Océanos y Mares , Clima , Ecosistema , Arrecifes de Coral
2.
J Fish Biol ; 104(4): 1122-1135, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38193568

RESUMEN

Population estimates are required for effective conservation of many rare marine species, but can be difficult to obtain. The critically endangered red handfish (Thymichthys politus) is a coastal anglerfish known only from two fragmented populations in southeast Tasmania, Australia. It is at a high risk of extinction due to low numbers, loss of habitat, and the impacts of climate change. To aid conservation efforts, we provide the first empirical population size estimates of red handfish and investigate other important aspects of the species' life history, such as growth, habitat association, and movement. We surveyed both red handfish local populations via underwater visual census on scuba over 3 years and used photographic mark-recapture techniques to estimate biological parameters. In 2020, the local adult population size was estimated to be 94 (95% confidence interval [CI] 40-231) adults at one site, and 7 (95% CI 5-10) at the other site, suggesting an estimated global population of 101 adults. Movement of individuals was extremely limited at 48.5 m (± 77.7 S.D.) per year. We also found evidence of declining fish density, a declining proportion of juveniles, and increasing average fish size during the study. These results provide a serious warning that red handfish are likely sliding toward extinction, and highlight the urgent need to expand efforts for ex situ captive breeding to bolster numbers in the wild and maintain captive insurance populations, and to protect vital habitat to safeguard the species' ongoing survival in the wild.


Asunto(s)
Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Animales , Conservación de los Recursos Naturales/métodos , Extinción Biológica , Peces , Ecosistema
3.
PLoS Biol ; 21(12): e3002392, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38079442

RESUMEN

The multifaceted effects of climate change on physical and biogeochemical processes are rapidly altering marine ecosystems but often are considered in isolation, leaving our understanding of interactions between these drivers of ecosystem change relatively poor. This is particularly true for shallow coastal ecosystems, which are fuelled by a combination of distinct pelagic and benthic energy pathways that may respond to climate change in fundamentally distinct ways. The fish production supported by these systems is likely to be impacted by climate change differently to those of offshore and shelf ecosystems, which have relatively simpler food webs and mostly lack benthic primary production sources. We developed a novel, multispecies size spectrum model for shallow coastal reefs, specifically designed to simulate potential interactive outcomes of changing benthic and pelagic energy inputs and temperatures and calculate the relative importance of these variables for the fish community. Our model, calibrated using field data from an extensive temperate reef monitoring program, predicts that changes in resource levels will have much stronger impacts on fish biomass and yields than changes driven by physiological responses to temperature. Under increased plankton abundance, species in all fish trophic groups were predicted to increase in biomass, average size, and yields. By contrast, changes in benthic resources produced variable responses across fish trophic groups. Increased benthic resources led to increasing benthivorous and piscivorous fish biomasses, yields, and mean body sizes, but biomass decreases among herbivore and planktivore species. When resource changes were combined with warming seas, physiological responses generally decreased species' biomass and yields. Our results suggest that understanding changes in benthic production and its implications for coastal fisheries should be a priority research area. Our modified size spectrum model provides a framework for further study of benthic and pelagic energy pathways that can be easily adapted to other ecosystems.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Cadena Alimentaria , Biomasa , Océanos y Mares , Peces/fisiología
4.
Nature ; 615(7954): 858-865, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949201

RESUMEN

Human society is dependent on nature1,2, but whether our ecological foundations are at risk remains unknown in the absence of systematic monitoring of species' populations3. Knowledge of species fluctuations is particularly inadequate in the marine realm4. Here we assess the population trends of 1,057 common shallow reef species from multiple phyla at 1,636 sites around Australia over the past decade. Most populations decreased over this period, including many tropical fishes, temperate invertebrates (particularly echinoderms) and southwestern Australian macroalgae, whereas coral populations remained relatively stable. Population declines typically followed heatwave years, when local water temperatures were more than 0.5 °C above temperatures in 2008. Following heatwaves5,6, species abundances generally tended to decline near warm range edges, and increase near cool range edges. More than 30% of shallow invertebrate species in cool latitudes exhibited high extinction risk, with rapidly declining populations trapped by deep ocean barriers, preventing poleward retreat as temperatures rise. Greater conservation effort is needed to safeguard temperate marine ecosystems, which are disproportionately threatened and include species with deep evolutionary roots. Fundamental among such efforts, and broader societal needs to efficiently adapt to interacting anthropogenic and natural pressures, is greatly expanded monitoring of species' population trends7,8.


Asunto(s)
Antozoos , Arrecifes de Coral , Calor Extremo , Peces , Calentamiento Global , Invertebrados , Océanos y Mares , Agua de Mar , Algas Marinas , Animales , Australia , Peces/clasificación , Invertebrados/clasificación , Calentamiento Global/estadística & datos numéricos , Algas Marinas/clasificación , Dinámica Poblacional , Densidad de Población , Agua de Mar/análisis , Extinción Biológica , Conservación de los Recursos Naturales/tendencias , Equinodermos/clasificación
5.
Curr Biol ; 32(19): 4128-4138.e3, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36150387

RESUMEN

Warming seas, marine heatwaves, and habitat degradation are increasingly widespread phenomena affecting marine biodiversity, yet our understanding of their broader impacts is largely derived from collective insights from independent localized studies. Insufficient systematic broadscale monitoring limits our understanding of the true extent of these impacts and our capacity to track these at scales relevant to national policies and international agreements. Using an extensive time series of co-located reef fish community structure and habitat data spanning 12 years and the entire Australian continent, we found that reef fish community responses to changing temperatures and habitats are dynamic and widespread but regionally patchy. Shifts in composition and abundance of the fish community often occurred within 2 years of environmental or habitat change, although the relative importance of these two mechanisms of climate impact tended to differ between tropical and temperate zones. The clearest of these changes on temperate and subtropical reefs were temperature related, with responses measured by the reef fish thermal index indicating reshuffling according to the thermal affinities of species present. On low latitude coral reefs, the community generalization index indicated shifting dominance of habitat generalist fishes through time, concurrent with changing coral cover. Our results emphasize the importance of maintaining local ecological detail when scaling up datasets to inform national policies and global biodiversity targets. Scaled-up ecological monitoring is needed to discriminate among increasingly diverse drivers of large-scale biodiversity change and better connect presently disjointed systems of biodiversity observation, indicator research, and governance.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Antozoos/fisiología , Australia , Biodiversidad , Cambio Climático , Ecosistema , Peces/fisiología
6.
PLoS One ; 15(8): e0237257, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32785267

RESUMEN

Global climate change is driving the redistribution of marine species and thereby potentially restructuring endemic communities. Understanding how localised conservation measures such as protection from additional human pressures can confer resilience to ecosystems is therefore an important area of research. Here, we examine the resilience of a no-take marine reserve (NTR) to the establishment of urchin barrens habitat. The barrens habitat is created through overgrazing of kelp by an invading urchin species that is expanding its range within a hotspot of rapid climate change. In our study region, a multi-year monitoring program provides a unique time-series of benthic imagery collected by an Autonomous Underwater Vehicle (AUV) within an NTR and nearby reference areas. We use a Bayesian hierarchical spatio-temporal modelling approach to estimate whether the NTR is associated with reduced formation of urchin barrens, and thereby enhances local resilience. Our approach controls for the important environmental covariates of depth and habitat complexity (quantified as rugosity derived from multibeam sonar mapping), as well as spatial and temporal dependence. We find evidence for the NTR conferring resilience with a strong reserve effect that suggests improved resistance to the establishment of barrens. However, we find a concerning and consistent trajectory of increasing barrens cover in both the reference areas and the NTR, with the odds of barrens increasing by approximately 32% per year. Thus, whereas the reserve is demonstrating resilience to the initial establishment of barrens, there is currently no evidence of recovery once barrens are established. We also find that depth and rugosity covariates derived from multibeam mapping provide useful predictors for barrens occurrence. These results have important management implications as they demonstrate: (i) the importance of monitoring programs to inform adaptive management; (ii) that NTRs provide a potential local conservation management tool under climate change impacts, and (iii) that technologies such as AUVs and multibeam mapping can be harnessed to inform regional decision-making. Continuation of the current monitoring program is required to assess whether the NTR can provide long term protection from a phase shift that replaces kelp with urchin barrens.


Asunto(s)
Erizos de Mar , Distribución Animal , Animales , Organismos Acuáticos/fisiología , Teorema de Bayes , Cambio Climático , Conservación de los Recursos Naturales , Erizos de Mar/fisiología
7.
Ecol Evol ; 10(14): 6954-6966, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32760504

RESUMEN

The relative roles of top-down (consumer-driven) and bottom-up (resource-driven) forcing in exploited marine ecosystems have been much debated. Examples from a variety of marine systems of exploitation-induced, top-down trophic forcing have led to a general view that human-induced predator perturbations can disrupt entire marine food webs, yet other studies that have found no such evidence provide a counterpoint. Though evidence continues to emerge, an unresolved debate exists regarding both the relative roles of top-down versus bottom-up forcing and the capacity of human exploitation to instigate top-down, community-level effects. Using time-series data for 104 reef communities spanning tropical to temperate Australia from 1992 to 2013, we aimed to quantify relationships among long-term trophic group population density trends, latitude, and exploitation status over a continental-scale biogeographic range. Specifically, we amalgamated two long-term monitoring databases of marine community dynamics to test for significant positive or negative trends in density of each of three key trophic levels (predators, herbivores, and algae) across the entire time series at each of the 104 locations. We found that trophic control tended toward bottom-up driven in tropical systems and top-down driven in temperate systems. Further, alternating long-term population trends across multiple trophic levels (a method of identifying trophic cascades), presumably due to top-down trophic forcing, occurred in roughly fifteen percent of locations where the prerequisite significant predator trends occurred. Such alternating trophic trends were significantly more likely to occur at locations with increasing predator densities over time. Within these locations, we found a marked latitudinal gradient in the prevalence of long-term, alternating trophic group trends, from rare in the tropics (<5% of cases) to relatively common in temperate areas (~45%). Lastly, the strongest trends in predator and algal density occurred in older no-take marine reserves; however, exploitation status did not affect the likelihood of alternating long-term trophic group trends occurring. Our data suggest that the type and degree of trophic forcing in this system are likely related to one or more covariates of latitude, and that ecosystem resiliency to top-down control does not universally vary in this system based on exploitation level.

8.
Nat Ecol Evol ; 4(6): 809-814, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32251381

RESUMEN

Ectotherms generally shrink under experimental warming, but whether this pattern extends to wild populations is uncertain. We analysed ten million visual survey records, spanning the Australian continent and multiple decades and comprising the most common coastal reef fishes (335 species). We found that temperature indeed drives spatial and temporal changes in fish body size, but not consistently in the negative fashion expected. Around 55% of species were smaller in warmer waters (especially among small-bodied species), while 45% were bigger. The direction of a species' response to temperature through space was generally consistent with its response to temperature increase through time at any given location, suggesting that spatial trends could help forecast fish responses to long-term warming. However, temporal changes were about ten times faster than spatial trends (~4% versus ~40% body size change per 1 °C change through space and time, respectively). The rapid and variable responses of fish size to warming may herald unexpected impacts on ecosystem restructuring, with potentially greater consequences than if all species were shrinking.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Australia , Tamaño Corporal , Peces , Temperatura
9.
Ecol Evol ; 8(18): 9372-9383, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30377508

RESUMEN

Collecting data on unlicensed open-access coastal activities, such as some types of recreational fishing, has often relied on telephone interviews selected from landline directories. However, this approach is becoming obsolete due to changes in communication technology such as a switch to unlisted mobile phones. Other methods, such as boat ramp interviews, are often impractical due to high labor cost. We trialed an autonomous, ultra-high-resolution photosampling method as a cost effect solution for direct measurements of a recreational fishery. Our sequential photosampling was batched processed using a novel software application to produce "big data" time series movies from a spatial subset of the fishery, and we validated this with a regional bus-route survey and interviews with participants at access points. We also compared labor costs between these two methods. Most trailer boat users were recreational fishers targeting tuna spp. Our camera system closely matched trends in temporal variation from the larger scale regional survey, but as the camera data were at much higher frequency, we could additionally describe strong, daily variability in effort. Peaks were normally associated with weekends, but consecutive weekend tuna fishing competitions led to an anomaly of high effort across the normal weekday lulls. By reducing field time and batch processing imagery, Monthly labor costs for the camera sampling were a quarter of the bus-route survey; and individual camera samples cost 2.5% of bus route samples to obtain. Gigapixel panoramic camera observations of fishing were representative of the temporal variability of regional fishing effort and could be used to develop a cost-efficient index. High-frequency sampling had the added benefit of being more likely to detect abnormal patterns of use. Combinations of remote sensing and on-site interviews may provide a solution to describing highly variable effort in recreational fisheries while also validating activity and catch.

10.
PLoS One ; 13(9): e0203827, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30226871

RESUMEN

Efficient monitoring of organisms is at the foundation of protected area and biodiversity management. Such monitoring programs are based on a systematically selected set of survey locations that, while able to track trends at those locations through time, lack inference for the overall region being "monitored". Advances in spatially-balanced sampling approaches offer alternatives but remain largely untested in marine ecosystems. This study evaluated the merit of using a two-stage, spatially-balanced survey framework, in conjunction with generalized additive models, to estimate epifauna cover at a reef-wide scale for mesophotic reefs within a large, cross-shelf marine park. Imagery acquired by an autonomous underwater vehicle was classified using a hierarchical scheme developed under the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI). At a realistic image subsampling intensity, the two-stage, spatially-balanced framework provided accurate and precise estimates of reef-wide cover for a select number of epifaunal classes at the coarsest CATAMI levels, in particular bryozoan and porifera classes. However, at finer hierarchical levels, accuracy and/or precision of cover estimates declined, primarily because of the natural rarity of even the most common of these classes/morphospecies. Ranked predictor importance suggested that bathymetry, backscatter and derivative terrain variables calculated at their smallest analysis window scales (i.e. 81 m2) were generally the most important variables in the modeling of reef-wide cover. This study makes an important step in identifying the constraints and limitations that can be identified through a robust statistical approach to design and analysis. The two-stage, spatially-balanced framework has great potential for effective quantification of epifaunal cover in cross-shelf mesophotic reefs. However, greater image subsampling intensity than traditionally applied is required to ensure adequate observations for finer-level CATAMI classes and associated morphospecies.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Algoritmos , Organismos Acuáticos , Australia , Biodiversidad , Arrecifes de Coral , Ecosistema , Sedimentos Geológicos , Biología Marina/métodos
11.
PLoS One ; 13(8): e0201518, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30102710

RESUMEN

The critically endangered spotted handfish (Brachionichthys hirsutus) is restricted to a limited number of locations in south-eastern Tasmania, Australia. As is often the case for rare species, conducting statistically adequate surveys for B. hirsutus can be costly and time consuming due to the low probability of encountering individuals. For the first time we used a highly efficient and rigorous Global Positioning System (GPS) parameterised underwater visual census (GUVC) to survey B. hirsutus abundance within all nine known local populations in the Derwent Estuary within one season. In addition, a benthic microhabitat assessment was conducted simultaneously using a GoPro® camera attached to diver to determine B. hirsutus microhabitat preferences. B. hirsutus local populations varied between sites, with densities ranging from 1.58 to 43.0 fishes per hectare. B. hirsutus demonstrates a strong preference for complex microhabitat features, such as depressions and ripple formations filled with biogenic substrates (e.g. shells) but avoids simple, low relief microhabitats (e.g. sand flats) and areas dominated by ephemeral, filamentous algae. Complex microhabitats may enable B. hirsutus to avoid predators, increase forage opportunities or provide higher quality spawning sites. This first wide-scale application of GUVC for B. hirsutus allowed us to survey a larger number of sites than previously possible to provide a robust reference point for future long-term monitoring.


Asunto(s)
Distribución Animal/fisiología , Ecosistema , Especies en Peligro de Extinción , Peces/fisiología , Sistemas de Información Geográfica , Animales , Conducta Alimentaria/fisiología , Tecnología de Sensores Remotos/instrumentación , Tecnología de Sensores Remotos/métodos , Reproducción/fisiología , Tasmania , Grabación en Video/instrumentación , Grabación en Video/métodos
12.
Bioscience ; 67(2): 134-146, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28596615

RESUMEN

Reporting progress against targets for international biodiversity agreements is hindered by a shortage of suitable biodiversity data. We describe a cost-effective system involving Reef Life Survey citizen scientists in the systematic collection of quantitative data covering multiple phyla that can underpin numerous marine biodiversity indicators at high spatial and temporal resolution. We then summarize the findings of a continental- and decadal-scale State of the Environment assessment for rocky and coral reefs based on indicators of ecosystem state relating to fishing, ocean warming, and invasive species and describing the distribution of threatened species. Fishing impacts are widespread, whereas substantial warming-related change affected some regions between 2005 and 2015. Invasive species are concentrated near harbors in southeastern Australia, and the threatened-species index is highest for the Great Australian Bight and Tasman Sea. Our approach can be applied globally to improve reporting against biodiversity targets and enhance public and policymakers' understanding of marine biodiversity trends.

13.
Proc Biol Sci ; 284(1856)2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28592671

RESUMEN

Shifts in the abundance and location of species are restructuring life on the Earth, presenting the need to build resilience into our natural systems. Here, we tested if protection from fishing promotes community resilience in temperate reef communities undergoing rapid warming in Tasmania. Regardless of protection status, we detected a signature of warming in the brown macroalgae, invertebrates and fishes, through increases in the local richness and abundance of warm-affinity species. Even so, responses in protected communities diverged from exploited communities. At the local scale, the number of cool-affinity fishes and canopy-forming algal species increased following protection, even though the observation window fell within a period of warming. At the same time, exploited communities gained turf algal and sessile invertebrate species. We further found that the recovery of predator populations following protection leads to marked declines in mobile invertebrates-this trend could be incorrectly attributed to warming without contextual data quantifying community change across trophic levels. By comparing long-term change in exploited and protected reefs, we empirically demonstrate the role of biological interactions in both facilitating and resisting climate-related biodiversity change. We further highlight the potential for trophic interactions to alter the progression of both range expansions and contractions.


Asunto(s)
Biodiversidad , Cambio Climático , Arrecifes de Coral , Animales , Peces , Invertebrados , Phaeophyceae , Tasmania
15.
Nature ; 528(7580): 88-92, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26560025

RESUMEN

A critical assumption underlying projections of biodiversity change associated with global warming is that ecological communities comprise balanced mixes of warm-affinity and cool-affinity species which, on average, approximate local environmental temperatures. Nevertheless, here we find that most shallow water marine species occupy broad thermal distributions that are aggregated in either temperate or tropical realms. These distributional trends result in ocean-scale spatial thermal biases, where communities are dominated by species with warmer or cooler affinity than local environmental temperatures. We use community-level thermal deviations from local temperatures as a form of sensitivity to warming, and combine these with projected ocean warming data to predict warming-related loss of species from present-day communities over the next century. Large changes in local species composition appear likely, and proximity to thermal limits, as inferred from present-day species' distributional ranges, outweighs spatial variation in warming rates in contributing to predicted rates of local species loss.


Asunto(s)
Organismos Acuáticos/fisiología , Biodiversidad , Calentamiento Global , Agua de Mar , Temperatura , Aclimatación/fisiología , Animales , Arrecifes de Coral , Peces/fisiología , Mapeo Geográfico , Invertebrados/fisiología , Filogenia , Estaciones del Año , Especificidad de la Especie , Clima Tropical
16.
PLoS One ; 10(10): e0140270, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26461104

RESUMEN

Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.


Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Peces/fisiología , Animales , Biomasa , Intervalos de Confianza , Geografía , Clima Tropical
17.
Mar Pollut Bull ; 95(1): 324-32, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25882229

RESUMEN

Urbanisation of the coastal zone represents a key threat to marine biodiversity, including rocky reef communities which often possess disproportionate ecological, recreational and commercial importance. The nature and magnitude of local urban impacts on reef biodiversity near three Australian capital cities were quantified using visual census methods. The most impacted reefs in urbanised embayments were consistently characterised by smaller, faster growing species, reduced fish biomass and richness, and reduced mobile invertebrate abundance and richness. Reef faunal distribution varied significantly with heavy metals, local population density, and proximity to city ports, while native fish and invertebrate communities were most depauperate in locations where invasive species were abundant. Our study adds impetus for improved urban planning and pollution management practises, while also highlighting the potential for skilled volunteers to improve the tracking of changes in marine biodiversity values and the effectiveness of management intervention.


Asunto(s)
Biodiversidad , Ciudades/estadística & datos numéricos , Arrecifes de Coral , Peces , Invertebrados , Contaminación del Agua , Animales , Australia , Biomasa , Metales Pesados , Densidad de Población , Urbanización
18.
PLoS One ; 10(2): e0118390, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25693066

RESUMEN

Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.


Asunto(s)
Kelp/fisiología , Agua de Mar/análisis , Adaptación Biológica , Australia , Cambio Climático , Ecosistema , Biología Marina , Población
19.
Ecology ; 95(7): 2016-25, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25163132

RESUMEN

Understanding the way in which species are associated in communities is a fundamental question in ecology. Yet there remains a tension between communities as highly structured units or as coincidental collections of individualistic species. We explored these ideas using a new statistical approach that clusters species based on their environmental response: a species archetype, rather than clustering sites based on their species composition. We found groups of species that are consistently highly correlated, but that these groups are not unique to any set of locations and overlap spatially. The species present at a single site are a realization of species from the (multiple) archetype groups that are likely to be present at that location based on their response to the environment.


Asunto(s)
Ecosistema , Peces/fisiología , Invertebrados/fisiología , Modelos Biológicos , Animales , Demografía , Océanos y Mares , Especificidad de la Especie
20.
Ecol Appl ; 24(2): 287-99, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24689141

RESUMEN

To support coastal planning through improved understanding of patterns of biotic and abiotic surrogacy at broad scales, we used gradient forest modeling (GFM) to analyze and predict spatial patterns of compositional turnover of demersal fishes, macroinvertebrates, and macroalgae on shallow, temperate Australian reefs. Predictive models were first developed using environmental surrogates with estimates of prediction uncertainty, and then the efficacy of the three assemblages as biosurrogates for each other was assessed. Data from underwater visual surveys of subtidal rocky reefs were collected from the southeastern coastline of continental Australia (including South Australia and Victoria) and the northern coastline of Tasmania. These data were combined with 0.01 degree-resolution gridded environmental variables to develop statistical models of compositional turnover (beta diversity) using GFM. GFM extends the machine learning, ensemble tree-based method of random forests (RF), to allow the simultaneous modeling of multiple taxa. The models were used to generate predictions of compositional turnover for each of the three assemblages within unsurveyed areas across the 6600 km of coastline in the region of interest. The most important predictor for all three assemblages was variability in sea surface temperature (measured as standard deviation from measures taken interannually). Spatial predictions of compositional turnover within unsurveyed areas across the region of interest were remarkably congruent across the three taxa. However, the greatest uncertainty in these predictions varied in location among the different assemblages. Pairwise congruency comparisons of observed and predicted turnover among the three assemblages showed that invertebrate and macroalgal biodiversity were most similar, followed by fishes and macroalgae, and lastly fishes and invertebrate biodiversity, suggesting that of the three assemblages, macroalgae would make the best biosurrogate for both invertebrate and fish compositional turnover.


Asunto(s)
Arrecifes de Coral , Peces/fisiología , Invertebrados/fisiología , Algas Marinas/fisiología , Animales , Biodiversidad , Clima , Demografía , Peces/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA