Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Forensic Sci Int Genet ; 71: 103055, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762965

RESUMEN

Forensic Investigative Genetic Genealogy, a recent sub discipline of forensic genomics, leverages the high throughput and sensitivity of detection of next generation sequencing and established genetic and genealogical approaches to support the identification of human remains from missing persons investigations and investigative lead generation in violent crimes. To facilitate forensic DNA evidence analysis, the ForenSeq® Kintelligence multiplex, consisting of 10,230 SNPs, was developed. Design of the ForenSeq Kintelligence Kit, the MiSeq FGx® Sequencing System and the ForenSeq Universal Analysis Software is described. Developmental validation in accordance with SWGDAM guidelines and forensic quality assurance standards, using single source samples, is reported for the end-to-end workflow from library preparation to data interpretation. Performance metrics support the conclusion that more genetic information can be obtained from challenging samples compared to other commercially available forensic targeted DNA assays developed for capillary electrophoresis (CE) or other current next generation sequencing (NGS) kits due to the higher number of markers, the overall shorter amplicon sizes (97.8% <150 bp), and kit design. Data indicate that the multiplex is robust and fit for purpose for a wide range of quantity and quality samples. The ForenSeq Kintelligence Kit and the Universal Analysis Software allow transfer of the genetic component of forensic investigative genetic genealogy to the operational forensic laboratory.


Asunto(s)
Dermatoglifia del ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Programas Informáticos , Humanos
2.
Forensic Sci Int Genet ; 64: 102851, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907074

RESUMEN

For human identification purposes, forensic genetics has primarily relied upon a core set of autosomal (and to a lesser extent Y chromosome) short tandem repeat (STR) markers that are enriched by amplification using the polymerase chain reaction (PCR) that are subsequently separated and detected using capillary electrophoresis (CE). While STR typing conducted in this manner is well-developed and robust, advances in molecular biology that have occurred over the last 15 years, in particular massively parallel sequencing (MPS) [1-7], offer certain advantages as compared to CE-based typing. First and foremost is the high throughput capacity of MPS. Current bench top high throughput sequencers enable larger batteries of markers to be multiplexed and multiple samples to be sequenced simultaneously (e.g., millions to billions of nucleotides can be sequenced in one run). Second, compared to the length-based CE approach, sequencing STRs increases discrimination power, enhances sensitivity of detection, reduces noise due to instrumentation, and improves mixture interpretation [4,8-23]. Third, since detection of STRs is based on sequence and not fluorescence, amplicons can be designed that are shorter in length and of similar lengths among loci, where possible, which can improve amplification efficiency and analysis of degraded samples. Lastly, MPS offers a single format approach that can be applied to analysis of a wide variety of genetic markers of forensic interest (e.g., STRs, mitochondrial DNA, single nucleotide polymorphisms, insertion/deletions). These features make MPS a desirable technology for casework [14,15,24,25-48]. The developmental validation of the ForenSeq MainstAY library preparation kit with the MiSeq FGx Sequencing System and ForenSeq Universal Software is reported here to assist with validation of this MPS system for casework [49]. The results show that the system is sensitive, accurate and precise, specific, and performs well with mixtures and mock case-type samples.


Asunto(s)
Dermatoglifia del ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Dermatoglifia del ADN/métodos , Reacción en Cadena de la Polimerasa , Mutación INDEL , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA