Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood Adv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159429

RESUMEN

Osteopenia and osteoporosis are common long-term complications of the cytotoxic conditioning regimen for hematopoietic stem cell transplantation (HSCT). We examined mesenchymal stem and progenitor cells (MSPCs) that include skeletal progenitors from mice undergoing HSCT. Such MSPCs showed reduced CFU-F frequency, increased DNA damage and enhanced occurrence of cellular senescence, while there was a reduced bone volume in animals that underwent HSCT. This reduced MSPC function correlated with elevated activation of the small RhoGTPAse Cdc42, disorganized F-actin distribution, mitochondrial abnormalities and impaired mitophagy in MSPCs. Changes and defects similar to those in mice were also observed in MSPCs from humans undergoing HSCT. A pharmacological treatment that attenuated the elevated activation of CDC42 restored F-actin fiber alignment, mitochondrial function, and mitophagy in MSPCs in vitro. Finally, targeting CDC42 activity in vivo in animals undergoing transplants improved MSPC quality to increase both bone volume and trabecular bone thickness. Our study shows that attenuation of CDC42 activity is sufficient to attenuate reduced function of MSPCs in a BM transplant setting.

3.
Hemasphere ; 8(7): e110, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38993727

RESUMEN

Multiple myeloma (MM) is a genetically heterogeneous disease and the management of relapses is one of the biggest clinical challenges. TP53 alterations are established high-risk markers and are included in the current disease staging criteria. KRAS is the most frequently mutated gene affecting around 20% of MM patients. Applying Clonal Competition Assays (CCA) by co-culturing color-labeled genetically modified cell models, we recently showed that mono- and biallelic alterations in TP53 transmit a fitness advantage to the cells. Here, we report a similar dynamic for two mutations in KRAS (G12A and A146T), providing a biological rationale for the high frequency of KRAS and TP53 alterations at MM relapse. Resistance mutations, on the other hand, did not endow MM cells with a general fitness advantage but rather presented a disadvantage compared to the wild-type. CUL4B KO and IKZF1 A152T transmit resistance against immunomodulatory agents, PSMB5 A20T to proteasome inhibition. However, MM cells harboring such lesions only outcompete the culture in the presence of the respective drug. To better prevent the selection of clones with the potential of inducing relapse, these results argue in favor of treatment-free breaks or a switch of the drug class given as maintenance therapy. In summary, the fitness benefit of TP53 and KRAS mutations was not treatment-related, unlike patient-derived drug resistance alterations that may only induce an advantage under treatment. CCAs are suitable models for the study of clonal evolution and competitive (dis)advantages conveyed by a specific genetic lesion of interest, and their dependence on external factors such as the treatment.

4.
Platelets ; 35(1): 2358244, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38845541

RESUMEN

Thromboembolic events are common in patients with essential thrombocythemia (ET). However, the pathophysiological mechanisms underlying the increased thrombotic risk remain to be determined. Here, we perform the first phenotypical characterization of platelet expression using single-cell mass cytometry in six ET patients and six age- and sex-matched healthy individuals. A large panel of 18 transmembrane regulators of platelet function and activation were analyzed, at baseline and after ex-vivo stimulation with thrombin receptor-activating peptide (TRAP). We detected a significant overexpression of the activation marker CD62P (p-Selectin) (p = .049) and the collagen receptor GPVI (p = .044) in non-stimulated ET platelets. In contrast, ET platelets had a lower expression of the integrin subunits of the fibrinogen receptor GPIIb/IIIa CD41 (p = .036) and CD61 (p = .044) and of the von Willebrand factor receptor CD42b (p = .044). Using the FlowSOM algorithm, we identified 2 subclusters of ET platelets with a prothrombotic expression profile, one of them (cluster 3) significantly overrepresented in ET (22.13% of the total platelets in ET, 2.94% in controls, p = .035). Platelet counts were significantly increased in ET compared to controls (p = .0123). In ET, MPV inversely correlated with platelet count (r=-0.96). These data highlight the prothrombotic phenotype of ET and postulate GPVI as a potential target to prevent thrombosis in these patients.


Essential thrombocythemia (ET) is a rare disease characterized by an increased number of platelets in the blood. As a complication, many of these patients develop a blood clot, which can be life-threatening. So far, the reason behind the higher risk of blood clots is unclear. In this study, we analyzed platelet surface markers that play a critical role in platelet function and platelet activation using a modern technology called mass cytometry. For this purpose, blood samples from 6 patients with ET and 6 healthy control individuals were analyzed. We found significant differences between ET platelets and healthy platelets. ET platelets had higher expression levels of p-Selectin (CD62P), a key marker of platelet activation, and of the collagen receptor GPVI, which is important for clot formation. These results may be driven by a specific platelet subcluster overrepresented in ET. Other surface markers, such as the fibrinogen receptor GPIIb/IIIa CD41, CD61, and the von Willebrand factor receptor CD42b, were lower expressed in ET platelets. When ET platelets were treated with the clotting factor thrombin (thrombin receptor-activating peptide, TRAP), we found a differential response in platelet activation compared to healthy platelets. In conclusion, our results show an increased activation and clotting potential of ET platelets. The platelet surface protein GPVI may be a potential drug target to prevent abnormal blood clotting in ET patients.


Asunto(s)
Plaquetas , Trombocitemia Esencial , Trombosis , Humanos , Trombocitemia Esencial/metabolismo , Trombocitemia Esencial/complicaciones , Plaquetas/metabolismo , Masculino , Femenino , Trombosis/metabolismo , Trombosis/etiología , Persona de Mediana Edad , Anciano , Citometría de Flujo/métodos , Activación Plaquetaria , Estudios de Casos y Controles , Adulto
5.
Nat Cancer ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942927

RESUMEN

Multiple myeloma (MM) is a plasma cell malignancy of the bone marrow. Despite therapeutic advances, MM remains incurable, and better risk stratification as well as new therapies are therefore highly needed. The proteome of MM has not been systematically assessed before and holds the potential to uncover insight into disease biology and improved prognostication in addition to genetic and transcriptomic studies. Here we provide a comprehensive multiomics analysis including deep tandem mass tag-based quantitative global (phospho)proteomics, RNA sequencing, and nanopore DNA sequencing of 138 primary patient-derived plasma cell malignancies encompassing treatment-naive MM, plasma cell leukemia and the premalignancy monoclonal gammopathy of undetermined significance, as well as healthy controls. We found that the (phospho)proteome of malignant plasma cells are highly deregulated as compared with healthy plasma cells and is both defined by chromosomal alterations as well as posttranscriptional regulation. A prognostic protein signature was identified that is associated with aggressive disease independent of established risk factors in MM. Integration with functional genetics and single-cell RNA sequencing revealed general and genetic subtype-specific deregulated proteins and pathways in plasma cell malignancies that include potential targets for (immuno)therapies. Our study demonstrates the potential of proteogenomics in cancer and provides an easily accessible resource for investigating protein regulation and new therapeutic approaches in MM.

6.
Transfusion ; 64(5): 871-880, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600674

RESUMEN

BACKGROUND: Despite recent advances in the treatment of multiple myeloma, high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation (ASCT) remains an essential therapeutic keystone. As for the stem cell mobilization procedure, different regimens have been established, usually consisting of a cycle of chemotherapy followed by application of granulocyte-colony stimulating factor (G-CSF), although febrile neutropenia is a common complication. Following national guidelines, our institution decided to primarily use G-CSF only mobilization during the COVID-19 pandemic to minimize the patients' risk of infection and to reduce the burden on the health system. STUDY DESIGN AND METHODS: In this retrospective single-center analysis, the efficacy and safety of G-CSF only mobilization was evaluated and compared to a historic control cohort undergoing chemotherapy-based mobilization by cyclophosphamide and etoposide (CE) plus G-CSF. RESULTS: Although G-CSF only was associated with a higher need for plerixafor administration (p < .0001) and a higher number of apheresis sessions per patient (p = .0002), we were able to collect the target dose of hematopoietic stem cells in the majority of our patients. CE mobilization achieved higher hematopoietic stem cell yields (p = .0015) and shorter apheresis sessions (p < .0001) yet was accompanied by an increased risk of febrile neutropenia (p < .0001). There was no difference in engraftment after ASCT. DISCUSSION: G-CSF only mobilization is a useful option in selected patients with comorbidities and an increased risk of serious infections, especially in the wintertime or in future pandemics.


Asunto(s)
Ciclofosfamida , Etopósido , Factor Estimulante de Colonias de Granulocitos , Movilización de Célula Madre Hematopoyética , Mieloma Múltiple , Trasplante Autólogo , Adulto , Femenino , Humanos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bencilaminas , COVID-19 , Ciclamas/uso terapéutico , Ciclamas/farmacología , Ciclofosfamida/uso terapéutico , Ciclofosfamida/administración & dosificación , Etopósido/uso terapéutico , Etopósido/administración & dosificación , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Movilización de Célula Madre Hematopoyética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Mieloma Múltiple/terapia , Estudios Retrospectivos , SARS-CoV-2
9.
Nuklearmedizin ; 63(2): 57-61, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190998

RESUMEN

C-X-C motif chemokine receptor 4 (CXCR4) is overexpressed in a multitude of cancers, including neoplasms of hematopoietic origin. This feature can be leveraged by a theranostic approach, which provides a read-out of the actual CXCR4 expression in vivo, followed by CXCR4-targeted radioligand therapy (RLT) exerting anti-cancer as well as myeloablative efficacy. In a recent meeting of hematooncology and nuclear medicine specialists, statements on the current clinical practice and future perspectives of this innovative concept were proposed and summarized in this opinion article. Experts concluded that i) CXCR4-directed [68Ga]Ga-PentixaFor PET/CT has the potential to improve imaging for patients with marginal zone lymphoma; ii) CXCR4-targeted RLT exerts anti-lymphoma efficacy and myeloablative effects in patients with advanced, treatment-refractory T-cell lymphomas; iii) prospective trials with CXCR4-based imaging and theranostics are warranted.


Asunto(s)
Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Medicina de Precisión , Estudios Prospectivos , Receptores CXCR4
10.
Nat Cancer ; 5(1): 187-208, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172339

RESUMEN

The microbiome is a predictor of clinical outcome in patients receiving allogeneic hematopoietic stem cell transplantation (allo-SCT). Microbiota-derived metabolites can modulate these outcomes. How bacteria, fungi and viruses contribute to the production of intestinal metabolites is still unclear. We combined amplicon sequencing, viral metagenomics and targeted metabolomics from stool samples of patients receiving allo-SCT (n = 78) and uncovered a microbiome signature of Lachnospiraceae and Oscillospiraceae and their associated bacteriophages, correlating with the production of immunomodulatory metabolites (IMMs). Moreover, we established the IMM risk index (IMM-RI), which was associated with improved survival and reduced relapse. A high abundance of short-chain fatty acid-biosynthesis pathways, specifically butyric acid via butyryl-coenzyme A (CoA):acetate CoA-transferase (BCoAT, which catalyzes EC 2.8.3.8) was detected in IMM-RI low-risk patients, and virome genome assembly identified two bacteriophages encoding BCoAT as an auxiliary metabolic gene. In conclusion, our study identifies a microbiome signature associated with protective IMMs and provides a rationale for considering metabolite-producing consortia and metabolite formulations as microbiome-based therapies.


Asunto(s)
Bacteriófagos , Trasplante de Células Madre Hematopoyéticas , Humanos , Bacteriófagos/genética , Heces/microbiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Bacterias/genética , Bacterias/metabolismo , Ácido Butírico/metabolismo
11.
EBioMedicine ; 97: 104834, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865045

RESUMEN

BACKGROUND: Inter-individual differences in response to immune checkpoint inhibitors (ICI) remain a major challenge in cancer treatment. The composition of the gut microbiome has been associated with differential ICI outcome, but the underlying molecular mechanisms remain unclear, and therapeutic modulation challenging. METHODS: We established an in vivo model to treat C57Bl/6j mice with the type-I interferon (IFN-I)-modulating, bacterial-derived metabolite desaminotyrosine (DAT) to improve ICI therapy. Broad spectrum antibiotics were used to mimic gut microbial dysbiosis and associated ICI resistance. We utilized genetic mouse models to address the role of host IFN-I in DAT-modulated antitumour immunity. Changes in gut microbiota were assessed using 16S-rRNA sequencing analyses. FINDINGS: We found that oral supplementation of mice with the microbial metabolite DAT delays tumour growth and promotes ICI immunotherapy with anti-CTLA-4 or anti-PD-1. DAT-enhanced antitumour immunity was associated with more activated T cells and natural killer cells in the tumour microenvironment and was dependent on host IFN-I signalling. Consistent with this, DAT potently enhanced expansion of antigen-specific T cells following vaccination with an IFN-I-inducing adjuvant. DAT supplementation in mice compensated for the negative effects of broad-spectrum antibiotic-induced dysbiosis on anti-CTLA-4-mediated antitumour immunity. Oral administration of DAT altered the gut microbial composition in mice with increased abundance of bacterial taxa that are associated with beneficial response to ICI immunotherapy. INTERPRETATION: We introduce the therapeutic use of an IFN-I-modulating bacterial-derived metabolite to overcome resistance to ICI. This approach is a promising strategy particularly for patients with a history of broad-spectrum antibiotic use and associated loss of gut microbial diversity. FUNDING: Melanoma Research Alliance, Deutsche Forschungsgemeinschaft, German Cancer Aid, Wilhelm Sander Foundation, Novartis Foundation.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Humanos , Animales , Ratones , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Disbiosis , Linfocitos T , Melanoma/tratamiento farmacológico , Inmunoterapia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Microambiente Tumoral
12.
Strahlenther Onkol ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37676483

RESUMEN

PURPOSE: Co-prevalence of abdominal aortic aneurysm (AAA) and cancer poses a unique challenge in medical care since both diseases and their respective therapies might interact. Recently, reduced AAA growth rates were observed in cancer patients that received radiation therapy (RT). The purpose of this study was to perform a fine-grained analysis of the effects of RT on AAA growth with respect to direct (infield) and out-of-field (outfield) radiation exposure, and radiation dose-dependency. METHODS: A retrospective single-center analysis identified patients with AAA, cancer, and RT. Clinical data, radiation plans, and aneurysm diameters were analyzed. The total dose of radiation to each aneurysm was computed. AAA growth under infield and outfield exposure was compared to patients with AAA and cancer that did not receive RT (no-RT control) and to an external noncancer AAA reference cohort. RESULTS: Between 2003 and 2020, a total of 38 AAA patients who had received well-documented RT for their malignancy were identified. AAA growth was considerably reduced for infield patients (n = 18) compared to outfield patients (n = 20), albeit not significantly (0.8 ± 1.0 vs. 1.3 ± 1.6 mm/year, p = 0.28). Overall, annual AAA growth in RT patients was lower compared to no-RT control patients (1.1 ± 1.5 vs. 1.8 ± 2.2 mm/year, p = 0.06) and significantly reduced compared to the reference cohort (1.1 ± 1.5 vs. 2.7 ± 2.1 mm/year, p < 0.001). The pattern of AAA growth reduction due to RT was corroborated in linear regression analyses correcting for initial AAA diameter. A further investigation with respect to dose-dependency of radiation effects on AAA growth, however, revealed no apparent association. CONCLUSION: In this study, both infield and outfield radiation exposure were associated with reduced AAA growth. This finding warrants further investigation, both in a larger scale clinical cohort and on a molecular level.

13.
Cell Rep Med ; 4(9): 101171, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37657445

RESUMEN

Tumor-derived extracellular vesicles (EVs) have been associated with immune evasion and tumor progression. We show that the RNA-sensing receptor RIG-I within tumor cells governs biogenesis and immunomodulatory function of EVs. Cancer-intrinsic RIG-I activation releases EVs, which mediate dendritic cell maturation and T cell antitumor immunity, synergizing with immune checkpoint blockade. Intact RIG-I, autocrine interferon signaling, and the GTPase Rab27a in tumor cells are required for biogenesis of immunostimulatory EVs. Active intrinsic RIG-I signaling governs composition of the tumor EV RNA cargo including small non-coding stimulatory RNAs. High transcriptional activity of EV pathway genes and RIG-I in melanoma samples associate with prolonged patient survival and beneficial response to immunotherapy. EVs generated from human melanoma after RIG-I stimulation induce potent antigen-specific T cell responses. We thus define a molecular pathway that can be targeted in tumors to favorably alter EV immunomodulatory function. We propose "reprogramming" of tumor EVs as a personalized strategy for T cell-mediated cancer immunotherapy.


Asunto(s)
Melanoma , Ácidos Nucleicos , Humanos , ARN , Linfocitos T , Inmunoterapia , ARN Neoplásico , Melanoma/genética , Melanoma/terapia
14.
medRxiv ; 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37546840

RESUMEN

Background: Leukocyte progenitors derived from clonal hematopoiesis of undetermined potential (CHIP) are associated with increased cardiovascular events. However, the prevalence and functional relevance of CHIP in coronary artery disease (CAD) are unclear, and cells affected by CHIP have not been detected in human atherosclerotic plaques. Methods: CHIP mutations in blood and tissues were identified by targeted deep-DNA-sequencing (DNAseq: coverage >3,000) and whole-genome-sequencing (WGS: coverage >35). CHIP-mutated leukocytes were visualized in human atherosclerotic plaques by mutaFISH™. Functional relevance of CHIP mutations was studied by RNAseq. Results: DNAseq of whole blood from 540 deceased CAD patients of the Munich cardIovaScular StudIes biObaNk (MISSION) identified 253 (46.9%) CHIP mutation carriers (mean age 78.3 years). DNAseq on myocardium, atherosclerotic coronary and carotid arteries detected identical CHIP mutations in 18 out of 25 mutation carriers in tissue DNA. MutaFISH™ visualized individual macrophages carrying DNMT3A CHIP mutations in human atherosclerotic plaques. Studying monocyte-derived macrophages from Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET; n=941) by WGS revealed CHIP mutations in 14.2% (mean age 67.1 years). RNAseq of these macrophages revealed that expression patterns in CHIP mutation carriers differed substantially from those of non-carriers. Moreover, patterns were different depending on the underlying mutations, e.g. those carrying TET2 mutations predominantly displayed upregulated inflammatory signaling whereas ASXL1 mutations showed stronger effects on metabolic pathways. Conclusions: Deep-DNA-sequencing reveals a high prevalence of CHIP mutations in whole blood of CAD patients. CHIP-affected leukocytes invade plaques in human coronary arteries. RNAseq data obtained from macrophages of CHIP-affected patients suggest that pro-atherosclerotic signaling differs depending on the underlying mutations. Further studies are necessary to understand whether specific pathways affected by CHIP mutations may be targeted for personalized treatment.

15.
Nat Commun ; 14(1): 4632, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532709

RESUMEN

Systemic pan-tumor analyses may reveal the significance of common features implicated in cancer immunogenicity and patient survival. Here, we provide a comprehensive multi-omics data set for 32 patients across 25 tumor types for proteogenomic-based discovery of neoantigens. By using an optimized computational approach, we discover a large number of tumor-specific and tumor-associated antigens. To create a pipeline for the identification of neoantigens in our cohort, we combine DNA and RNA sequencing with MS-based immunopeptidomics of tumor specimens, followed by the assessment of their immunogenicity and an in-depth validation process. We detect a broad variety of non-canonical HLA-binding peptides in the majority of patients demonstrating partially immunogenicity. Our validation process allows for the selection of 32 potential neoantigen candidates. The majority of neoantigen candidates originates from variants identified in the RNA data set, illustrating the relevance of RNA as a still understudied source of cancer antigens. This study underlines the importance of RNA-centered variant detection for the identification of shared biomarkers and potentially relevant neoantigen candidates.


Asunto(s)
Neoplasias , Proteogenómica , Humanos , Neoplasias/genética , Antígenos de Neoplasias/genética , Péptidos
16.
iScience ; 26(8): 107328, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37520699

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) describes the age-related acquisition of somatic mutations in hematopoietic stem/progenitor cells (HSPC) leading to clonal blood cell expansion. Although CHIP mutations drive myeloid malignancies like myelodysplastic syndromes (MDS) it is unknown if clonal expansion is attributable to changes in cell type kinetics, or involves reorganization of the hematopoietic hierarchy. Using computational modeling we analyzed differentiation and proliferation kinetics of cultured hematopoietic stem cells (HSC) from 8 healthy individuals, 7 CHIP, and 10 MDS patients. While the standard hematopoietic hierarchy explained HSPC kinetics in healthy samples, 57% of CHIP and 70% of MDS samples were best described with alternative hierarchies. Deregulated kinetics were found at various HSPC compartments with high inter-individual heterogeneity in CHIP and MDS, while altered HSC rates were most relevant in MDS. Quantifying kinetic heterogeneity in detail, we show that reorganization of the HSPC compartment is already detectable in the premalignant CHIP state.

17.
EMBO Mol Med ; 15(9): e16431, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37485814

RESUMEN

The DNA damage response (DDR) acts as a barrier to malignant transformation and is often impaired during tumorigenesis. Exploiting the impaired DDR can be a promising therapeutic strategy; however, the mechanisms of inactivation and corresponding biomarkers are incompletely understood. Starting from an unbiased screening approach, we identified the SMC5-SMC6 Complex Localization Factor 2 (SLF2) as a regulator of the DDR and biomarker for a B-cell lymphoma (BCL) patient subgroup with an adverse prognosis. SLF2-deficiency leads to loss of DDR factors including Claspin (CLSPN) and consequently impairs CHK1 activation. In line with this mechanism, genetic deletion of Slf2 drives lymphomagenesis in vivo. Tumor cells lacking SLF2 are characterized by a high level of DNA damage, which leads to alterations of the post-translational SUMOylation pathway as a safeguard. The resulting co-dependency confers synthetic lethality to a clinically applicable SUMOylation inhibitor (SUMOi), and inhibitors of the DDR pathway act highly synergistic with SUMOi. Together, our results identify SLF2 as a DDR regulator and reveal co-targeting of the DDR and SUMOylation as a promising strategy for treating aggressive lymphoma.


Asunto(s)
Daño del ADN , Linfoma de Células B , Humanos , Proteínas Adaptadoras Transductoras de Señales , Linfocitos B , Reparación del ADN , Linfoma de Células B/genética
19.
Haematologica ; 108(2): 490-501, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35950533

RESUMEN

Remodeling of the bone marrow microenvironment in chronic inflammation and in aging reduces hematopoietic stem cell (HSC) function. To assess the mechanisms of this functional decline of HSC and find strategies to counteract it, we established a model in which the Sfrp1 gene was deleted in Osterix+ osteolineage cells (OS1Δ/Δ mice). HSC from these mice showed severely diminished repopulating activity with associated DNA damage, enriched expression of the reactive oxygen species pathway and reduced single-cell proliferation. Interestingly, not only was the protein level of Catenin beta-1 (bcatenin) elevated, but so was its association with the phosphorylated co-activator p300 in the nucleus. Since these two proteins play a key role in promotion of differentiation and senescence, we inhibited in vivo phosphorylation of p300 through PP2A-PR72/130 by administration of IQ-1 in OS1Δ/Δ mice. This treatment not only reduced the b-catenin/phosphop300 association, but also decreased nuclear p300. More importantly, in vivo IQ-1 treatment fully restored HSC repopulating activity of the OS1Δ/Δ mice. Our findings show that the osteoprogenitor Sfrp1 is essential for maintaining HSC function. Furthermore, pharmacological downregulation of the nuclear b-catenin/phospho-p300 association is a new strategy to restore poor HSC function.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Ratones , Animales , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular , Médula Ósea/metabolismo , Envejecimiento , Especies Reactivas de Oxígeno/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
20.
Blood Adv ; 7(4): 469-481, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35917568

RESUMEN

Proteasome inhibition is a highly effective treatment for multiple myeloma (MM). However, virtually all patients develop proteasome inhibitor resistance, which is associated with a poor prognosis. Hyperactive small ubiquitin-like modifier (SUMO) signaling is involved in both cancer pathogenesis and cancer progression. A state of increased SUMOylation has been associated with aggressive cancer biology. We found that relapsed/refractory MM is characterized by a SUMO-high state, and high expression of the SUMO E1-activating enzyme (SAE1/UBA2) is associated with poor overall survival. Consistently, continuous treatment of MM cell lines with carfilzomib (CFZ) enhanced SUMO pathway activity. Treatment of MM cell lines with the SUMO E1-activating enzyme inhibitor subasumstat (TAK-981) showed synergy with CFZ in both CFZ-sensitive and CFZ-resistant MM cell lines, irrespective of the TP53 state. Combination therapy was effective in primary MM cells and in 2 murine MM xenograft models. Mechanistically, combination treatment with subasumstat and CFZ enhanced genotoxic and proteotoxic stress, and induced apoptosis was associated with activity of the prolyl isomerase PIN1. In summary, our findings reveal activated SUMOylation as a therapeutic target in MM and point to combined SUMO/proteasome inhibition as a novel and potent strategy for the treatment of proteasome inhibitor-resistant MM.


Asunto(s)
Mieloma Múltiple , Inhibidores de Proteasoma , Humanos , Animales , Ratones , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Sumoilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Apoptosis , Enzimas Activadoras de Ubiquitina/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA