Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Front Bioinform ; 4: 1352594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601476

RESUMEN

A major challenge in sequencing-based spatial transcriptomics (ST) is resolution limitations. Tissue sections are divided into hundreds of thousands of spots, where each spot invariably contains a mixture of cell types. Methods have been developed to deconvolute the mixed transcriptional signal into its constituents. Although ST is becoming essential for drug discovery, especially in cardiometabolic diseases, to date, no deconvolution benchmark has been performed on these types of tissues and diseases. However, the three methods, Cell2location, RCTD, and spatialDWLS, have previously been shown to perform well in brain tissue and simulated data. Here, we compare these methods to assess the best performance when using human data from cardiovascular disease (CVD) and chronic kidney disease (CKD) from patients in different pathological states, evaluated using expert annotation. In this study, we found that all three methods performed comparably well in deconvoluting verifiable cell types, including smooth muscle cells and macrophages in vascular samples and podocytes in kidney samples. RCTD shows the best performance accuracy scores in CVD samples, while Cell2location, on average, achieved the highest performance across all test experiments. Although all three methods had similar accuracies, Cell2location needed less reference data to converge at the expense of higher computational intensity. Finally, we also report that RCTD has the fastest computational time and the simplest workflow, requiring fewer computational dependencies. In conclusion, we find that each method has particular advantages, and the optimal choice depends on the use case.

2.
Mol Oncol ; 18(3): 726-742, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225213

RESUMEN

Prostate cancer is a frequent malignancy in older men and has a very high 5-year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy. However, tumor progression due to AR-dependent and AR-independent mechanisms is often observed after some time, and novel treatment strategies are urgently needed. Dysregulation of the PI3K/AKT/mTOR pathway in advanced prostate cancer and its implication in treatment resistance has been reported. We compared the impact of PI3K/AKT/mTOR pathway inhibitors with different selectivity profiles on in vitro cell proliferation and on caspase 3/7 activation as a marker for apoptosis induction, and observed the strongest effects in the androgen-sensitive prostate cancer cell lines VCaP and LNCaP. Combination treatment with the AR inhibitor darolutamide led to enhanced apoptosis in these cell lines, the effects being most pronounced upon cotreatment with the pan-PI3K inhibitor copanlisib. A subsequent transcriptomic analysis performed in VCaP cells revealed that combining darolutamide with copanlisib impacted gene expression much more than individual treatment. A comprehensive reversal of the androgen response and the mTORC1 transcriptional programs as well as a marked induction of DNA damage was observed. Next, an in vivo efficacy study was performed using the androgen-sensitive patient-derived prostate cancer (PDX) model LuCaP 35 and a superior efficacy was observed after the combined treatment with copanlisib and darolutamide. Importantly, immunohistochemistry analysis of these treated tumors showed increased apoptosis, as revealed by elevated levels of cleaved caspase 3 and Bcl-2-binding component 3 (BBC3). In conclusion, these data demonstrate that concurrent blockade of the PI3K/AKT/mTOR and AR pathways has superior antitumor efficacy and induces apoptosis in androgen-sensitive prostate cancer cell lines and PDX models.


Asunto(s)
Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-akt , Masculino , Humanos , Anciano , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Androgénicos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Caspasa 3 , Andrógenos , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Próstata/genética , Proliferación Celular , Apoptosis , Línea Celular Tumoral
3.
Cell Rep ; 42(2): 112086, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36790929

RESUMEN

Ischemic cardiomyopathy (ICM) is the leading cause of heart failure worldwide, yet the cellular and molecular signature of this disease is largely unclear. Using single-nucleus RNA sequencing (snRNA-seq) and integrated computational analyses, we profile the transcriptomes of over 99,000 human cardiac nuclei from the non-infarct region of the left ventricle of 7 ICM transplant recipients and 8 non-failing (NF) controls. We find the cellular composition of the ischemic heart is significantly altered, with decreased cardiomyocytes and increased proportions of lymphatic, angiogenic, and arterial endothelial cells in patients with ICM. We show that there is increased LAMININ signaling from endothelial cells to other cell types in ICM compared with NF. Finally, we find that the transcriptional changes that occur in ICM are similar to those in hypertrophic and dilated cardiomyopathies and that the mining of these combined datasets can identify druggable genes that could be used to target end-stage heart failure.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Isquemia Miocárdica , Humanos , Células Endoteliales/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Análisis de Secuencia de ARN , Cardiomiopatías/genética
4.
Cells ; 11(10)2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35626694

RESUMEN

Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-ß and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.


Asunto(s)
Enfermedad de la Arteria Coronaria , Insuficiencia Cardíaca , Fibroblastos , Fibrosis , Humanos , Músculo Liso Vascular , Volumen Sistólico
5.
Bioinformatics ; 38(6): 1756-1760, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34935911

RESUMEN

SUMMARY: Accurately identifying cell types is a critical step in single-cell sequencing analyses. Here, we present marker-based automatic cell-type annotation (MACA), a new tool for annotating single-cell transcriptomics datasets. We developed MACA by testing four cell-type scoring methods with two public cell-marker databases as reference in six single-cell studies. MACA compares favorably to four existing marker-based cell-type annotation methods in terms of accuracy and speed. We show that MACA can annotate a large single-nuclei RNA-seq study in minutes on human hearts with ∼290K cells. MACA scales easily to large datasets and can broadly help experts to annotate cell types in single-cell transcriptomics datasets, and we envision MACA provides a new opportunity for integration and standardization of cell-type annotation across multiple datasets. AVAILABILITY AND IMPLEMENTATION: MACA is written in python and released under GNU General Public License v3.0. The source code is available at https://github.com/ImXman/MACA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Lepidium , Programas Informáticos , Humanos , RNA-Seq , Perfilación de la Expresión Génica , Bases de Datos Factuales , Análisis de la Célula Individual
6.
Cancer Gene Ther ; 29(1): 49-61, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33414516

RESUMEN

The outcome of prostate cancer (PCa) patients is highly variable and depends on whether or not distant metastases occur. Multiple chromosomal deletions have been linked to early tumor marker PSA recurrence (biochemical relapse, BCR) after radical prostatectomy (RP), but their potential role for distant metastasis formation is largely unknown. Here, we specifically analyzed whether deletion of the tumor suppressor CHD1 (5q21) influences the post-surgical risk of distant metastasis and whether CHD1 loss directly contributes to metastasis formation in vivo. By considering >6800 patients we found that the CHD1 deletion negatively influences metastasis-free survival in R0 patients (HR: 2.32; 95% CI: 1.61, 3.33; p < 0.001) independent of preoperative PSA, pT stage, pN status, Gleason Score, and BCR. Moreover, CHD1 deletion predicts shortened BCR-free survival in pT2 patients and cancer-specific survival in all patients. In vivo, CHD1 loss increases spontaneous pulmonary metastasis formation in two distinct PCa models coupled with a higher number of multicellular colonies as compared to single-cell metastases. Transcriptome analyses revealed down-regulation of the PCa-specific metastasis suppressor and TGFß signaling regulator PMEPA1 after CHD1 depletion in both tested PCa models. CHD1 loss increases the risk of postoperative metastasis in R0-resected PCa patients and promotes spontaneous metastasis formation in vivo.


Asunto(s)
ADN Helicasas , Proteínas de Unión al ADN , Antígeno Prostático Específico , Neoplasias de la Próstata , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Supervivencia sin Enfermedad , Genes Supresores de Tumor , Humanos , Masculino , Proteínas de la Membrana , Clasificación del Tumor , Recurrencia Local de Neoplasia , Prostatectomía , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía
7.
Cancers (Basel) ; 15(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36611998

RESUMEN

Several inhibitors of androgen receptor (AR) function are approved for prostate cancer treatment, and their impact on gene transcription has been described. However, the ensuing effects at the protein level are far less well understood. We focused on the AR signaling inhibitor darolutamide and confirmed its strong AR binding and antagonistic activity using the high throughput cellular thermal shift assay (CETSA HT). Then, we generated comprehensive, quantitative proteomic data from the androgen-sensitive prostate cancer cell line VCaP and compared them to transcriptomic data. Following treatment with the synthetic androgen R1881 and darolutamide, global mass spectrometry-based proteomics and label-free quantification were performed. We found a generally good agreement between proteomic and transcriptomic data upon androgen stimulation and darolutamide inhibition. Similar effects were found both for the detected expressed genes and their protein products as well as for the corresponding biological programs. However, in a few instances there was a discrepancy in the magnitude of changes induced on gene expression levels compared to the corresponding protein levels, indicating post-transcriptional regulation of protein abundance. Chromatin immunoprecipitation DNA sequencing (ChIP-seq) and Hi-C chromatin immunoprecipitation (HiChIP) revealed the presence of androgen-activated AR-binding regions and long-distance AR-mediated loops at these genes.

8.
Clin Cancer Res ; 27(15): 4367-4378, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34035067

RESUMEN

PURPOSE: Androgen receptor (AR) inhibitors are well established in the treatment of castration-resistant prostate cancer and have recently shown efficacy also in castration-sensitive prostate cancer. Although most patients respond well to initial therapy, resistance eventually develops, and thus, more effective therapeutic approaches are needed. Prostate-specific membrane antigen (PSMA) is highly expressed in prostate cancer and presents an attractive target for radionuclide therapy. Here, we evaluated the efficacy and explored the mode of action of the PSMA-targeted thorium-227 conjugate (PSMA-TTC) BAY 2315497, an antibody-based targeted alpha-therapy, in combination with the AR inhibitor darolutamide. EXPERIMENTAL DESIGN: The in vitro and in vivo antitumor efficacy and mode of action of the combination treatment were investigated in preclinical cell line-derived and patient-derived prostate cancer xenograft models with different levels of PSMA expression. RESULTS: Darolutamide induced the expression of PSMA in androgen-sensitive VCaP and LNCaP cells in vitro, and the efficacy of darolutamide in combination with PSMA-TTC was synergistic in these cells. In vivo, the combination treatment showed synergistic antitumor efficacy in the low PSMA-expressing VCaP and in the high PSMA-expressing ST1273 prostate cancer models, and enhanced efficacy in the enzalutamide-resistant KUCaP-1 model. The treatments were well tolerated. Mode-of-action studies revealed that darolutamide induced PSMA expression, resulting in higher tumor uptake of PSMA-TTC, and consequently, higher antitumor efficacy, and impaired PSMA-TTC-mediated induction of DNA damage repair genes, potentially contributing to increased DNA damage. CONCLUSIONS: These results provide a strong rationale to investigate PSMA-TTC in combination with AR inhibitors in patients with prostate cancer.


Asunto(s)
Antagonistas de Receptores Androgénicos , Antígenos de Superficie , Glutamato Carboxipeptidasa II , Neoplasias de la Próstata , Pirazoles , Torio , Animales , Humanos , Masculino , Ratones , Antagonistas de Receptores Androgénicos/uso terapéutico , Antígenos de Superficie/efectos de los fármacos , Combinación de Medicamentos , Glutamato Carboxipeptidasa II/efectos de los fármacos , Modelos Biológicos , Neoplasias de la Próstata/tratamiento farmacológico , Pirazoles/uso terapéutico , Torio/uso terapéutico
9.
Cell Oncol (Dordr) ; 44(3): 581-594, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33492659

RESUMEN

PURPOSE: 5' adenosine monophosphate-activated kinase (AMPK) is an essential regulator of cellular energy homeostasis and has been associated with different pathologies, including cancer. Precisely defining the biological role of AMPK necessitates the availability of a potent and selective inhibitor. METHODS: High-throughput screening and chemical optimization were performed to identify a novel AMPK inhibitor. Cell proliferation and mechanistic assays, as well as gene expression analysis and chromatin immunoprecipitation were used to investigate the cellular impact as well as the crosstalk between lipid metabolism and androgen signaling in prostate cancer models. Also, fatty acid turnover was determined by examining lipid droplet formation. RESULTS: We identified BAY-3827 as a novel and potent AMPK inhibitor with additional activity against ribosomal 6 kinase (RSK) family members. It displays strong anti-proliferative effects in androgen-dependent prostate cancer cell lines. Analysis of genes involved in AMPK signaling revealed that the expression of those encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), fatty acid synthase (FASN) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), all of which are involved in lipid metabolism, was strongly upregulated by androgen in responsive models. Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) analysis identified several androgen receptor (AR) binding peaks in the HMGCR and PFKFB2 genes. BAY-3827 strongly down-regulated the expression of lipase E (LIPE), cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) and serine-threonine kinase AKT3 in responsive prostate cancer cell lines. Also, the expression of members of the carnitine palmitoyl-transferase 1 (CPT1) family was inhibited by BAY-3827, and this was paralleled by impaired lipid flux. CONCLUSIONS: The availability of the potent inhibitor BAY-3827 will contribute to a better understanding of the role of AMPK signaling in cancer, especially in prostate cancer.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias de la Próstata , Línea Celular Tumoral , Humanos , Masculino , Transducción de Señal/efectos de los fármacos
10.
Mol Oncol ; 14(9): 2022-2039, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32333502

RESUMEN

Prostate cancer (PCa) is one of the most frequent tumor types in the male Western population. Early-stage PCa and late-stage PCa are dependent on androgen signaling, and inhibitors of the androgen receptor (AR) axis represent the standard therapy. Here, we studied in detail the global impact of darolutamide, a newly approved AR antagonist, on the transcriptome and AR-bound cistrome in two PCa cell models. Darolutamide strongly depleted the AR from gene regulatory regions and abolished AR-driven transcriptional signaling. Enhancer activation was blocked at the chromatin level as evaluated by H3K27 acetylation (H3K27ac), H3K4 monomethylation (H3K4me1), and FOXA1, MED1, and BRD4 binding. We identified genomic regions with high affinities for the AR in androgen-stimulated, but also in androgen-depleted conditions. A similar AR affinity pattern was observed in healthy and PCa tissue samples. High FOXA1, BRD4, H3K27ac, and H3K4me1 levels were found to mark regions showing AR binding in the hormone-depleted setting. Conversely, low FOXA1, BRD4, and H3K27ac levels were observed at regulatory sites that responded strongly to androgen stimulation, and AR interactions at these sites were blocked by darolutamide. Beside marked loss of AR occupancy, FOXA1 recruitment to chromatin was also clearly reduced after darolutamide treatment. We furthermore identified numerous androgen-regulated super-enhancers (SEs) that were associated with hallmark androgen and cell proliferation-associated gene sets. Importantly, these SEs are also active in PCa tissues and sensitive to darolutamide treatment in our models. Our findings demonstrate that darolutamide is a potent AR antagonist blocking genome-wide AR enhancer and SE activation, and downstream transcription. We also show the existence of a dynamic AR cistrome that depends on the androgen levels and on high AR affinity regions present in PCa cell lines and also in tissue samples.


Asunto(s)
Andrógenos/metabolismo , Elementos de Facilitación Genéticos/genética , Pirazoles/farmacología , Transducción de Señal , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genoma Humano , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
11.
Mol Cancer Ther ; 19(1): 26-38, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31582533

RESUMEN

The DNA damage response (DDR) secures the integrity of the genome of eukaryotic cells. DDR deficiencies can promote tumorigenesis but concurrently may increase dependence on alternative repair pathways. The ataxia telangiectasia and Rad3-related (ATR) kinase plays a central role in the DDR by activating essential signaling pathways of DNA damage repair. Here, we studied the effect of the novel selective ATR kinase inhibitor BAY 1895344 on tumor cell growth and viability. Potent antiproliferative activity was demonstrated in a broad spectrum of human tumor cell lines. BAY 1895344 exhibited strong monotherapy efficacy in cancer xenograft models that carry DNA damage repair deficiencies. The combination of BAY 1895344 with DNA damage-inducing chemotherapy or external beam radiotherapy (EBRT) showed synergistic antitumor activity. Combination treatment with BAY 1895344 and DDR inhibitors achieved strong synergistic antiproliferative activity in vitro, and combined inhibition of ATR and PARP signaling using olaparib demonstrated synergistic antitumor activity in vivo Furthermore, the combination of BAY 1895344 with the novel, nonsteroidal androgen receptor antagonist darolutamide resulted in significantly improved antitumor efficacy compared with respective single-agent treatments in hormone-dependent prostate cancer, and addition of EBRT resulted in even further enhanced antitumor efficacy. Thus, the ATR inhibitor BAY 1895344 may provide new therapeutic options for the treatment of cancers with certain DDR deficiencies in monotherapy and in combination with DNA damage-inducing or DNA repair-compromising cancer therapies by improving their efficacy.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Daño del ADN/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Femenino , Humanos , Ratones
12.
Int J Mol Sci ; 20(12)2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31200487

RESUMEN

Recent advances in whole-genome and transcriptome sequencing of prostate cancer at different stages indicate that a large number of mutations found in tumors are present in non-protein coding regions of the genome and lead to dysregulated gene expression. Single nucleotide variations and small mutations affecting the recruitment of transcription factor complexes to DNA regulatory elements are observed in an increasing number of cases. Genomic rearrangements may position coding regions under the novel control of regulatory elements, as exemplified by the TMPRSS2-ERG fusion and the amplified enhancer identified upstream of the androgen receptor (AR) gene. Super-enhancers are increasingly found to play important roles in aberrant oncogenic transcription. Several players involved in these processes are currently being evaluated as drug targets and may represent new vulnerabilities that can be exploited for prostate cancer treatment. They include factors involved in enhancer and super-enhancer function such as bromodomain proteins and cyclin-dependent kinases. In addition, non-coding RNAs with an important gene regulatory role are being explored. The rapid progress made in understanding the influence of the non-coding part of the genome and of transcription dysregulation in prostate cancer could pave the way for the identification of novel treatment paradigms for the benefit of patients.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Activación Transcripcional , Animales , Elementos de Facilitación Genéticos , Humanos , Masculino , Regiones Promotoras Genéticas , Neoplasias de la Próstata/metabolismo
13.
Int J Cancer ; 145(5): 1382-1394, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30828788

RESUMEN

Darolutamide is a novel androgen receptor (AR) antagonist with a distinct chemical structure compared to other AR antagonists and currently in clinical Phase 3 trials for prostate cancer. Using cell-based transactivation assays, we demonstrate that darolutamide, its diastereomers and its main metabolite keto-darolutamide are strong, competitive antagonists for AR wild type, and also for several mutants identified in prostate cancer patients for which other AR antagonists show reduced antagonism or even agonism. Darolutamide, its two diastereomers and main metabolite are also strong antagonists in assays measuring AR N/C interaction and homodimerization. Molecular modeling suggests that the flexibility of darolutamide allows accommodation in the W742C/L mutated AR ligand-binding pocket while for enzalutamide the loss of the important hydrophobic interaction with W742 leads to reduced AR interaction. This correlates with an antagonistic pattern profile of coregulator recruitment for darolutamide. In vitro efficacy studies performed with androgen-dependent prostate cancer cell lines show that darolutamide strongly reduces cell viability and potently inhibits spheroid formation. Also, a marked down-regulation of androgen target genes paralleled by decreased AR binding to gene regulatory regions is seen. In vivo studies reveal that oral dosing of darolutamide markedly reduces growth of the LAPC-4 cell line-derived xenograft and of the KuCaP-1 patient-derived xenograft. Altogether, these results substantiate a unique antagonistic profile of darolutamide and support further development as a prostate cancer drug.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Pirazoles/farmacología , Receptores Androgénicos/metabolismo , Antagonistas de Receptores Androgénicos/química , Animales , Línea Celular Tumoral , Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones SCID , Modelos Moleculares , Neoplasias de la Próstata Resistentes a la Castración/genética , Dominios Proteicos , Pirazoles/química , Receptores Androgénicos/química , Receptores Androgénicos/genética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Int J Mol Sci ; 19(5)2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29734647

RESUMEN

Novel drugs, drug sequences and combinations have improved the outcome of prostate cancer in recent years. The latest approvals include abiraterone acetate, enzalutamide and apalutamide which target androgen receptor (AR) signaling, radium-223 dichloride for reduction of bone metastases, sipuleucel-T immunotherapy and taxane-based chemotherapy. Adding abiraterone acetate to androgen deprivation therapy (ADT) in order to achieve complete androgen blockade has proven highly beneficial for treatment of locally advanced prostate cancer and metastatic hormone-sensitive prostate cancer (mHSPC). Also, ADT together with docetaxel treatment showed significant benefit in mHSPC. Ongoing clinical trials for different subgroups of prostate cancer patients include the evaluation of the second-generation AR antagonists enzalutamide, apalutamide and darolutamide, of inhibitors of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, of inhibitors of DNA damage response, of targeted alpha therapy and of prostate-specific membrane antigen (PSMA) targeting approaches. Advanced clinical studies with immune checkpoint inhibitors have shown limited benefits in prostate cancer and more trials are needed to demonstrate efficacy. The identification of improved, personalized treatments will be much supported by the major progress recently made in the molecular characterization of early- and late-stage prostate cancer using “omics” technologies. This has already led to novel classifications of prostate tumors based on gene expression profiles and mutation status, and should greatly help in the choice of novel targeted therapies best tailored to the needs of patients.


Asunto(s)
Antagonistas de Receptores Androgénicos/uso terapéutico , Descubrimiento de Drogas , Inmunoterapia , Neoplasias de la Próstata/tratamiento farmacológico , Acetato de Abiraterona/uso terapéutico , Antígenos de Superficie/genética , Benzamidas , Glutamato Carboxipeptidasa II/genética , Humanos , Masculino , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/uso terapéutico , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Radioisótopos/uso terapéutico , Radio (Elemento)/uso terapéutico , Receptores Androgénicos/efectos de los fármacos , Receptores Androgénicos/genética , Tiohidantoínas/uso terapéutico
16.
Nucleic Acids Res ; 45(13): 7722-7735, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28475736

RESUMEN

The coordinated temporal and spatial activation of gene expression is essential for proper stem cell differentiation. The Chromodomain Helicase DNA-binding protein 1 (CHD1) is a chromatin remodeler closely associated with transcription and nucleosome turnover downstream of the transcriptional start site (TSS). In this study, we show that CHD1 is required for the induction of osteoblast-specific gene expression, extracellular-matrix mineralization and ectopic bone formation in vivo. Genome-wide occupancy analyses revealed increased CHD1 occupancy around the TSS of differentiation-activated genes. Furthermore, we observed that CHD1-dependent genes are mainly induced during osteoblast differentiation and are characterized by higher levels of CHD1 occupancy around the TSS. Interestingly, CHD1 depletion resulted in increased pausing of RNA Polymerase II (RNAPII) and decreased H2A.Z occupancy close to the TSS, but not at enhancer regions. These findings reveal a novel role for CHD1 during osteoblast differentiation and provide further insights into the intricacies of epigenetic regulatory mechanisms controlling cell fate determination.


Asunto(s)
Diferenciación Celular/fisiología , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Diferenciación Celular/genética , Células Cultivadas , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/genética , Sitio de Iniciación de la Transcripción
17.
Int J Mol Sci ; 18(5)2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28486411

RESUMEN

Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Animales , Biomarcadores de Tumor/genética , Humanos , Masculino , MicroARNs/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Tratamiento con ARN de Interferencia/métodos
18.
Cancer Res ; 77(9): 2387-2400, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28249899

RESUMEN

TGFß-SMAD signaling exerts a contextual effect that suppresses malignant growth early in epithelial tumorigenesis but promotes metastasis at later stages. Longstanding challenges in resolving this functional dichotomy may uncover new strategies to treat advanced carcinomas. The Krüppel-like transcription factor, KLF10, is a pivotal effector of TGFß/SMAD signaling that mediates antiproliferative effects of TGFß. In this study, we show how KLF10 opposes the prometastatic effects of TGFß by limiting its ability to induce epithelial-to-mesenchymal transition (EMT). KLF10 depletion accentuated induction of EMT as assessed by multiple metrics. KLF10 occupied GC-rich sequences in the promoter region of the EMT-promoting transcription factor SLUG/SNAI2, repressing its transcription by recruiting HDAC1 and licensing the removal of activating histone acetylation marks. In clinical specimens of lung adenocarcinoma, low KLF10 expression associated with decreased patient survival, consistent with a pivotal role for KLF10 in distinguishing the antiproliferative versus prometastatic functions of TGFß. Our results establish that KLF10 functions to suppress TGFß-induced EMT, establishing a molecular basis for the dichotomy of TGFß function during tumor progression. Cancer Res; 77(9); 2387-400. ©2017 AACR.


Asunto(s)
Adenocarcinoma/genética , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Transición Epitelial-Mesenquimal/genética , Retroalimentación Fisiológica , Factores de Transcripción de Tipo Kruppel/genética , Neoplasias Pulmonares/genética , Factor de Crecimiento Transformador beta/genética , Células A549 , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Animales , Humanos , Neoplasias Pulmonares/patología , Ratones Noqueados , Pacientes , Regiones Promotoras Genéticas , Transducción de Señal , Factores de Transcripción de la Familia Snail/genética
19.
Genome Biol ; 18(1): 32, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28209164

RESUMEN

BACKGROUND: Monoubiquitination of H2B (H2Bub1) is a largely enigmatic histone modification that has been linked to transcriptional elongation. Because of this association, it has been commonly assumed that H2Bub1 is an exclusively positively acting histone modification and that increased H2Bub1 occupancy correlates with increased gene expression. In contrast, depletion of the H2B ubiquitin ligases RNF20 or RNF40 alters the expression of only a subset of genes. RESULTS: Using conditional Rnf40 knockout mouse embryo fibroblasts, we show that genes occupied by low to moderate amounts of H2Bub1 are selectively regulated in response to Rnf40 deletion, whereas genes marked by high levels of H2Bub1 are mostly unaffected by Rnf40 loss. Furthermore, we find that decreased expression of RNF40-dependent genes is highly associated with widespread narrowing of H3K4me3 peaks. H2Bub1 promotes the broadening of H3K4me3 to increase transcriptional elongation, which together lead to increased tissue-specific gene transcription. Notably, genes upregulated following Rnf40 deletion, including Foxl2, are enriched for H3K27me3, which is decreased following Rnf40 deletion due to decreased expression of the Ezh2 gene. As a consequence, increased expression of some RNF40-"suppressed" genes is associated with enhancer activation via FOXL2. CONCLUSION: Together these findings reveal the complexity and context-dependency whereby one histone modification can have divergent effects on gene transcription. Furthermore, we show that these effects are dependent upon the activity of other epigenetic regulatory proteins and histone modifications.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Quinasa 9 Dependiente de la Ciclina/metabolismo , Elementos de Facilitación Genéticos , Proteína Potenciadora del Homólogo Zeste 2/genética , Fibroblastos/metabolismo , Genes Homeobox , Histonas/metabolismo , Ratones , Ratones Noqueados , Especificidad de Órganos/genética , Unión Proteica , Elongación de la Transcripción Genética , Transcripción Genética , Activación Transcripcional , Ubiquitinación
20.
Nucleic Acids Res ; 45(1): 127-141, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-27651452

RESUMEN

Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4) was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is recruited to the transcriptional start site of differentiation-induced genes. Unexpectedly, while promoter-proximal BRD4 occupancy correlated with gene expression, genes which displayed moderate expression and promoter-proximal BRD4 occupancy were most highly regulated and sensitive to BRD4 inhibition. Therefore, we examined distal BRD4 occupancy and uncovered a specific co-localization of BRD4 with the transcription factors C/EBPb, TEAD1, FOSL2 and JUND at putative osteoblast-specific enhancers. These findings reveal the intricacies of lineage specification and provide new insight into the context-dependent functions of BRD4.


Asunto(s)
Linaje de la Célula/genética , Epigénesis Genética , Células Epiteliales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas Nucleares/genética , Osteoblastos/metabolismo , Osteocitos/metabolismo , Factores de Transcripción/genética , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteínas de Ciclo Celular , Diferenciación Celular , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/citología , Antígeno 2 Relacionado con Fos/genética , Antígeno 2 Relacionado con Fos/metabolismo , Perfilación de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/citología , Proteínas Nucleares/metabolismo , Especificidad de Órganos , Osteoblastos/citología , Osteocitos/citología , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transducción de Señal , Factores de Transcripción de Dominio TEA , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA