Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Microbiol ; 121(3): 470-480, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37898563

RESUMEN

Staphylococcus aureus is considered an extracellular pathogen, yet the bacterium is able to survive within and escape from host cells. An agr/sae mutant of strain USA300 is unable to escape from macrophages but can replicate and survive within. We questioned whether such "non-toxic" S. aureus resembles the less pathogenic coagulase-negative Staphylococcal (CoNS) species like S. epidermidis, S. carnosus, S. lugdunensis, S. capitis, S. warneri, or S. pettenkoferi. We show that the CoNS are more efficiently killed in macrophage-like THP-1 cells or in human primary macrophages. Mutations in katA, copL, the regulatory system graRS, or sigB did not impact bacterial survival in THP-1 cells. Deletion of the superoxide dismutases impaired S. aureus survival in primary macrophages but not in THP-1 cells. However, expression of the S. aureus-specific sodM in S. epidermidis was not sufficient to protect this species from being killed. Thus, at least in those cells, better bacterial survival of S. aureus could not be linked to higher protection from ROS. However, "non-toxic" S. aureus was found to be insensitive to pH, whereas most CoNS were protected when phagosomal acidification was inhibited. Thus, species differences are at least partially linked to differences in sensitivity to acidification.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus , Humanos , Staphylococcus/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Macrófagos/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/genética
2.
J Thromb Haemost ; 20(6): 1464-1475, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35303391

RESUMEN

BACKGROUND: Toxins are key virulence determinants of pathogens and can impair the function of host immune cells, including platelets. Insights into pathogen toxin interference with platelets will be pivotal to improve treatment of patients with bacterial bloodstream infections. MATERIALS AND METHODS: In this study, we deciphered the effects of Staphylococcus aureus toxins α-hemolysin, LukAB, LukDE, and LukSF on human platelets and compared the effects with the pore forming toxin pneumolysin of Streptococcus pneumoniae. Activation of platelets and loss of platelet function were investigated by flow cytometry, aggregometry, platelet viability, fluorescence microscopy, and intracellular calcium release. Thrombus formation was assessed in whole blood. RESULTS: α-hemolysin (Hla) is known to be a pore-forming toxin. Hla-induced calcium influx initially activates platelets as indicated by CD62P and αIIbß3 integrin activation, but also induces finally alterations in the phenotype of platelets. In contrast to Hla and pneumolysin, S. aureus bicomponent pore-forming leukocidins LukAB, LukED, and LukSF do not bind to platelets and had no significant effect on platelet activation and viability. The presence of small amounts of Hla (0.2 µg/ml) in whole blood abrogates thrombus formation indicating that in systemic infections with S. aureus the stability of formed thrombi is impaired. Damage of platelets by Hla was not neutralized by intravenous immune globulins. CONCLUSION: Our findings might be of clinical relevance for S. aureus induced endocarditis. Stabilizing the aortic-valve thrombi by inhibiting Hla-induced impairment of platelets might reduce the risk for septic (micro-)embolization.


Asunto(s)
Infecciones Estafilocócicas , Trombosis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Calcio , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Humanos , Leucocidinas/metabolismo , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA