Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
RSC Adv ; 14(31): 22548-22559, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39021456

RESUMEN

The genus Hertia, which belongs to the Asteraceae family, is a flowering genus with 12 species found in Africa, North and South. Among the species present in Algeria, Hertia cheirifolia L. is distributed in the eastern regions of Algeria. The aim of this study is to evaluate its phytochemical composition with following pharmacological assessments: the antioxidant, antibacterial, and antifungal activities of Hertia cheirifolia L. essential oil (EO). GC-MS analysis was used to analyze the chemical constituents of H. cheirifolia essential oil. The antioxidant capacity was assessed using DPPH, FRAP, and H2O2 tests. The EO was also tested for its ability to inhibit six strains of microorganisms, including two Gram (+) and four Gram (-) strains. The antifungal activity was tested by analyzing the effect of the EO on the mycelial growth of Fusarium oxysporum f.sp. lycopersici (FOL) fungi. Results showed that primary volatile components were α-pinene (32.59%), 2-(1-cyclopent-1-enyl-1-methylethyl) cyclopentanone (14.62%), (-)-germacrene D (11.37%), and bakkenolide A (9.57%). H. cheirifolia EO showed inhibitory effects against DPPH, H2O2, and FRAP (IC50 = 0.34 ± 0.1, 0.053 ± 0.1, and 0.047 ± 0.01 mg mL-1, respectively). The EO also exhibited moderate antibacterial effects against Staphylococcus aureus ATCC 25923 (S. aureus), Streptococcus pneumoniae ATCC 49619 (S. pneumoniae), and Enterobacter aerogenes ATCC 13048 (E. aerogenes), as well as significant antioxidant potential and varied antifungal activity based on dosage and fungal strain. To our knowledge, no previous research has examined the antifungal capacity of H. cheirifolia oil and oil-mycelial development of the FOL relationship. To fully explore the benefits of H. cheirifolia EO, more in vivo research is necessary, along with more testing on other bacterial and fungal strains.

2.
Molecules ; 29(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675722

RESUMEN

Diabetes mellitus (DM) represents a problem for the healthcare system worldwide. DM has very serious complications such as blindness, kidney failure, and cardiovascular disease. In addition to the very bad socioeconomic impacts, it influences patients and their families and communities. The global costs of DM and its complications are huge and expected to rise by the year 2030. DM is caused by genetic and environmental risk factors. Genetic testing will aid in early diagnosis and identification of susceptible individuals or populations using ATP-sensitive potassium (KATP) channels present in different tissues such as the pancreas, myocardium, myocytes, and nervous tissues. The channels respond to different concentrations of blood sugar, stimulation by hormones, or ischemic conditions. In pancreatic cells, they regulate the secretion of insulin and glucagon. Mutations in the KCNJ11 gene that encodes the Kir6.2 protein (a major constituent of KATP channels) were reported to be associated with Type 2 DM, neonatal diabetes mellitus (NDM), and maturity-onset diabetes of the young (MODY). Kir6.2 harbors binding sites for ATP and phosphatidylinositol 4,5-diphosphate (PIP2). The ATP inhibits the KATP channel, while the (PIP2) activates it. A Kir6.2 mutation at tyrosine330 (Y330) was demonstrated to reduce ATP inhibition and predisposes to NDM. In this study, we examined the effect of mutations on the Kir6.2 structure using bioinformatics tools and molecular dynamic simulations (SIFT, PolyPhen, SNAP2, PANTHER, PhD&SNP, SNP&Go, I-Mutant, MuPro, MutPred, ConSurf, HOPE, and GROMACS). Our results indicated that M199R, R201H, R206H, and Y330H mutations influence Kir6.2 structure and function and therefore may cause DM. We conclude that MD simulations are useful techniques to predict the effects of mutations on protein structure. In addition, the M199R, R201H, R206H, and Y330H variant in the Kir6.2 protein may be associated with DM. These results require further verification in protein-protein interactions, Kir6.2 function, and case-control studies.


Asunto(s)
Diabetes Mellitus , Simulación de Dinámica Molecular , Canales de Potasio de Rectificación Interna , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/química , Humanos , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Mutación , Predisposición Genética a la Enfermedad , Sitios de Unión , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA