Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 18(7): e0289223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37498940

RESUMEN

We report on the achievement of continuous wave bi-frequency operation in a membrane external-cavity surface-emitting laser (MECSEL), which is optically pumped with up to 4 W of 808 nm pump light. The presence of spatially specific loss of the intra-cavity high reflectivity mirror allows loss to be controlled on certain transverse cavity modes. The regions of spatially specific loss are defined through the removal of Bragg layers from the surface of the cavity high reflectivity mirror in the form of crosshair patterns with undamaged central regions, which are created using a laser ablation system incorporating a digital micromirror device (DMD). By aligning the laser cavity mode with the geometric centre of the loss patterns, the laser simultaneously operated on two Hermite-Gaussian spatial modes: the fundamental HG00 and the higher order HG11 mode. We demonstrate bi-frequency operation over a range of pump powers and sizes of spatial loss features, with a wavelength separation of approximately 5 nm centred at 1005 nm.


Asunto(s)
Rayos Láser , Registros , Membranas , Distribución Normal
2.
Opt Express ; 30(18): 32174-32188, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242285

RESUMEN

Coherent laser arrays compatible with silicon photonics are demonstrated in a waveguide geometry in epitaxially grown semiconductor membrane quantum well lasers transferred on substrates of silicon carbide and oxidised silicon; we record lasing thresholds as low as 60 mW of pump power. We study the emission of single lasers and arrays of lasers in the sub-mm range. We are able to create waveguide laser arrays with modal widths of approximately 5 - 10 µm separated by 10 - 20 µm, using real and reciprocal space imaging we study their emission characteristics and find that they maintain their mutual coherence while operating on either single or multiple longitudinal modes per lasing cavity.

3.
Opt Express ; 29(15): 23290-23291, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614596

RESUMEN

We correct a mistake in [Opt. Express27, 11914 (2019)10.1364/OE.27.011914] when calculating the focal length of the Kerr lens with the measured values of the nonlinear refractive index n2 and parameters of a prototypical self-mode-locking VECSEL cavity. We therefore update Fig. 1 of the original publication. The new calculation yields a significantly larger value of the Kerr lens focal length leading to a smaller perturbation of the cavity beam profile.

4.
Opt Express ; 27(9): 11914-11929, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31052740

RESUMEN

Self-mode-locking has become an emerging path to the generation of ultrashort pulses with vertical-external-cavity surface-emitting lasers. In our work, a strong Kerr nonlinearity that is so far assumed to give rise to mode-locked operation is evidenced and a strong nonlinearity enhancement by the microcavity is revealed. We present wavelength-dependent measurements of the nonlinear absorption and nonlinear refractive index change in a gain chip using the Z-scan technique. We report negative nonlinear refraction up to 5x10-12 cm2/W in magnitude in the (InGa)As/Ga(AsP) material system close to the laser design wavelength, which can lead to Kerr lensing. We show that by changing the angle of incidence of the probe beam with respect to the gain chip, the Kerr nonlinearity can be wavelength-tuned, shifting with the microcavity resonance. Such findings may ultimately lead to novel concepts with regard to tailored self-mode-locking behavior achievable by peculiar Kerr-lens chip designs for cost-effective, robust and compact fs-pulsed semiconductor lasers.

5.
Opt Express ; 23(15): 19947-53, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26367654

RESUMEN

We present a passively mode-locked semiconductor disk laser (SDL) emitting at 650nm with intra-cavity second harmonic generation to the ultraviolet (UV) spectral range. Both the gain and the absorber structure contain InP quantum dots (QDs) as active material. In a v-shaped cavity using the semiconductor samples as end mirrors, a beta barium borate (BBO) crystal is placed in front of the semiconductor saturable absorber mirror (SESAM) for pulsed UV laser emission in one of the two outcoupled beams. Autocorrelation (AC) measurements at the fundamental wavelength reveal a FWHM pulse duration of 1.22ps. With a repetition frequency of 836MHz, the average output power is 10mW per beam for the red emission and 0.5mW at 325nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA