Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Protein J ; 43(4): 888-909, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39095592

RESUMEN

The current investigation focused on separating Cerastes cerastes venom to produce the first Kunitz-type peptide. Based on its anti-trypsin effect, Cerastokunin, a 7.75 kDa peptide, was purified until homogenity by three steps of chromatography. Cerastokunin was found to include 67 amino acid residues that were obtained by de novo sequencing using LC-MALDI-MSMS. Upon alignment with Kunitz-type peptides, there was a high degree of similarity. Cerastokunin's 3D structure had 12% α-helices and 21% ß-strands with pI 8.48. Cerastokunin showed a potent anticoagulant effect by inhibiting the protease activity of thrombin and trypsin as well as blocking the intrinsic and extrinsic coagulation pathways. In both PT and aPPT, Cerastokunin increased the blood clotting time in a dose-dependent way. Using Lys48 and Gln192 for direct binding, Cerastokunin inhibited thrombin, Factor Xa and trypsin as shown by molecular docking. Cerastokunin exhibited a dose-response blockade of PARs-dependent pathway platelet once stimulated by thrombin. An increased concentration of Cerastokunin resulted in a larger decrease of tail thrombus in the mice-carrageenan model in an in vivo investigation when compared to the effects of antithrombotic medications. At all Cerastokunin doses up to 6 mg/kg, no in vivo toxicity was seen in challenged mice over the trial's duration.


Asunto(s)
Plaquetas , Inhibidores del Factor Xa , Trombina , Animales , Humanos , Ratones , Secuencia de Aminoácidos , Anticoagulantes/farmacología , Anticoagulantes/química , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Factor Xa/química , Factor Xa/metabolismo , Inhibidores del Factor Xa/farmacología , Inhibidores del Factor Xa/química , Simulación del Acoplamiento Molecular , Trombina/química , Trombina/metabolismo , Masculino
2.
Exp Toxicol Pathol ; 67(7-8): 389-97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25921955

RESUMEN

Androctonus australis hector scorpion venom is well known by its high toxicity, it induces massive release of neurotransmitters that lead to pathophysiological disorders in cardiovascular, neuro-hormonal and immune systems. Previous studies have shown the relationship between the severity of scorpion envenoming and immune system activation. This study was assessed to investigate the involvement of complement system and inflammatory mediators after sublethal injection of Aah venom, its toxic fraction (FtoxG50) and its main toxins (AahI and AahII) into NMRI mice. The Activation complement system by the venom is also compared to that induced of lipopolysaccharides (LPS). Obtained results showed that seric complement system (CS) is activated by the venom and by its toxic components; this activation is more pronounced into liver tissue when toxic components (FtoxG50, AahI or AahII) are used. Increase of cytokine levels (IL1ß, TNFα and ICAM) into hepatic tissue induced by AahI or AahII neurotoxins is correlated with tissue alterations. Aprotinin, a non specific inhibitor of complement system seems to be able to reduce CS consumption and to restore partially the induced tissue damage by venom. The mechanisms by which toxic fraction or LPS induced the activation of complement system seem to be different. Sensitivity of hepatic tissue is more pronounced after FtoxG50 injection; however lung tissue is more sensible to LPS than FoxG50.


Asunto(s)
Activación de Complemento/fisiología , Inflamación/inmunología , Venenos de Escorpión/efectos adversos , Animales , Ratones , Escorpiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA