Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Sci Immunol ; 8(79): eabq7001, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608151

RESUMEN

Flagellin, the protein subunit of the bacterial flagellum, stimulates the innate immune receptor Toll-like receptor 5 (TLR5) after pattern recognition or evades TLR5 through lack of recognition. This binary response fails to explain the weak agonism of flagellins from commensal bacteria, raising the question of how TLR5 response is tuned. Here, we screened abundant flagellins present in metagenomes from human gut for both TLR5 recognition and activation and uncovered a class of flagellin-TLR5 interaction termed silent recognition. Silent flagellins were weak TLR5 agonists despite pattern recognition. Receptor activity was tuned by a TLR5-flagellin interaction distal to the site of pattern recognition that was present in Salmonella flagellin but absent in silent flagellins. This interaction enabled flagellin binding to preformed TLR5 dimers and increased TLR5 signaling by several orders of magnitude. Silent recognition by TLR5 occurred in human organoids and mice, and silent flagellin proteins were present in human stool. These flagellins were produced primarily by the abundant gut bacteria Lachnospiraceae and were enriched in nonindustrialized populations. Our findings provide a mechanism for the innate immune system to tolerate commensal-derived flagellins while remaining vigilant to the presence of flagellins produced by pathogens.


Asunto(s)
Flagelina , Receptor Toll-Like 5 , Animales , Humanos , Ratones , Bacterias , Flagelina/metabolismo , Transducción de Señal , Intestinos
2.
European J Org Chem ; 2022(27): e202200313, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-36035813

RESUMEN

Oligosaccharide fragments of fungal cell wall glycans are important molecular probes for studying both the biology of fungi and fungal infections of humans, animals, and plants. The fungal cell wall contains large amounts of various polysaccharides that are ligands for pattern recognition receptors (PRRs), eliciting an immune response upon recognition. Towards the establishment of a glycan array platform for the identification of new ligands of plant PRRs, tri-, penta-, and heptasaccharide fragments of different cell wall polysaccharides were prepared. Chito- and ß-(1→6)-gluco-oligosaccharides were synthesized by automated glycan assembly (AGA), and α-(1→3)- and α-(1→4)-gluco-oligosaccharides were synthesized in solution using a recently reported highly α-selective glycosylation methodology. Incubation of plants with the synthesized oligosaccharides revealed i) length dependence for plant activation by chito-oligosaccharides and ii) ß-1,6-glucan oligosaccharides as a new class of glycans capable of triggering plant activation.

3.
EMBO Rep ; 23(5): e53281, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35229426

RESUMEN

Plant immune responses must be tightly controlled for proper allocation of resources for growth and development. In plants, endogenous signaling peptides regulate developmental and growth-related processes. Recent research indicates that some of these peptides also have regulatory functions in the control of plant immune responses. This classifies these peptides as phytocytokines as they show analogies with metazoan cytokines. However, the mechanistic basis for phytocytokine-mediated regulation of plant immunity remains largely elusive. Here, we identify GOLVEN2 (GLV2) peptides as phytocytokines in Arabidopsis thaliana. GLV2 signaling enhances sensitivity of plants to elicitation with immunogenic bacterial elicitors and contributes to resistance against virulent bacterial pathogens. GLV2 is perceived by ROOT MERISTEM GROWTH FACTOR 1 INSENSITIVE (RGI) receptors. RGI mutants show reduced elicitor sensitivity and enhanced susceptibility to bacterial infection. RGI3 forms ligand-induced complexes with the pattern recognition receptor (PRR) FLAGELLIN SENSITIVE 2 (FLS2), suggesting that RGIs are part of PRR signaling platforms. GLV2-RGI signaling promotes PRR abundance independent of transcriptional regulation and controls plant immunity via a previously undescribed mechanism of phytocytokine activity.


Asunto(s)
Arabidopsis , Inmunidad de la Planta , Animales , Arabidopsis/genética , Flagelina , Inmunidad de la Planta/genética , Receptores de Superficie Celular , Transducción de Señal
4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34853170

RESUMEN

In nature, roots of healthy plants are colonized by multikingdom microbial communities that include bacteria, fungi, and oomycetes. A key question is how plants control the assembly of these diverse microbes in roots to maintain host-microbe homeostasis and health. Using microbiota reconstitution experiments with a set of immunocompromised Arabidopsis thaliana mutants and a multikingdom synthetic microbial community (SynCom) representative of the natural A. thaliana root microbiota, we observed that microbiota-mediated plant growth promotion was abolished in most of the tested immunocompromised mutants. Notably, more than 40% of between-genotype variation in these microbiota-induced growth differences was explained by fungal but not bacterial or oomycete load in roots. Extensive fungal overgrowth in roots and altered plant growth was evident at both vegetative and reproductive stages for a mutant impaired in the production of tryptophan-derived, specialized metabolites (cyp79b2/b3). Microbiota manipulation experiments with single- and multikingdom microbial SynComs further demonstrated that 1) the presence of fungi in the multikingdom SynCom was the direct cause of the dysbiotic phenotype in the cyp79b2/b3 mutant and 2) bacterial commensals and host tryptophan metabolism are both necessary to control fungal load, thereby promoting A. thaliana growth and survival. Our results indicate that protective activities of bacterial root commensals are as critical as the host tryptophan metabolic pathway in preventing fungal dysbiosis in the A. thaliana root endosphere.


Asunto(s)
Arabidopsis/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Triptófano/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Bacterias/metabolismo , Disbiosis/metabolismo , Hongos/metabolismo , Microbiota/genética , Microbiota/fisiología , Micosis/metabolismo , Oomicetos/metabolismo , Desarrollo de la Planta , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Microbiología del Suelo , Simbiosis/fisiología
5.
Nat Commun ; 12(1): 4194, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234144

RESUMEN

Photomorphogenesis, light-mediated development, is an essential feature of all terrestrial plants. While chloroplast development and brassinosteroid (BR) signaling are known players in photomorphogenesis, proteins that regulate both pathways have yet to be identified. Here we report that DE-ETIOLATION IN THE DARK AND YELLOWING IN THE LIGHT (DAY), a membrane protein containing DnaJ-like domain, plays a dual-role in photomorphogenesis by stabilizing the BR receptor, BRI1, as well as a key enzyme in chlorophyll biosynthesis, POR. DAY localizes to both the endomembrane and chloroplasts via its first transmembrane domain and chloroplast transit peptide, respectively, and interacts with BRI1 and POR in their respective subcellular compartments. Using genetic analysis, we show that DAY acts independently on BR signaling and chlorophyll biogenesis. Collectively, this work uncovers DAY as a factor that simultaneously regulates BR signaling and chloroplast development, revealing a key regulator of photomorphogenesis that acts across cell compartments.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de la Membrana/metabolismo , Morfogénesis/fisiología , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brasinoesteroides/metabolismo , Clorofila/biosíntesis , Cloroplastos/metabolismo , Etiolado/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Técnicas de Silenciamiento del Gen , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/aislamiento & purificación , Luz , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Morfogénesis/efectos de la radiación , Mutación , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Plantones/crecimiento & desarrollo , Transducción de Señal/fisiología
6.
Nat Plants ; 7(5): 587-597, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34007035

RESUMEN

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a low-abundance membrane lipid essential for plasma membrane function1,2. In plants, mutations in phosphatidylinositol 4-phosphate (PI4P) 5-kinases (PIP5K) suggest that PI(4,5)P2 production is involved in development, immunity and reproduction3-5. However, phospholipid synthesis is highly intricate6. It is thus likely that steady-state depletion of PI(4,5)P2 triggers confounding indirect effects. Furthermore, inducible tools available in plants allow PI(4,5)P2 to increase7-9 but not decrease, and no PIP5K inhibitors are available. Here, we introduce iDePP (inducible depletion of PI(4,5)P2 in plants), a system for the inducible and tunable depletion of PI(4,5)P2 in plants in less than three hours. Using this strategy, we confirm that PI(4,5)P2 is critical for various aspects of plant development, including root growth, root-hair elongation and organ initiation. We show that PI(4,5)P2 is required to recruit various endocytic proteins, including AP2-µ, to the plasma membrane, and thus to regulate clathrin-mediated endocytosis. Finally, we find that inducible PI(4,5)P2 perturbation impacts the dynamics of the actin cytoskeleton as well as microtubule anisotropy. Together, we propose that iDePP is a simple and efficient genetic tool to test the importance of PI(4,5)P2 in given cellular or developmental responses, and also to evaluate the importance of this lipid in protein localization.


Asunto(s)
Arabidopsis/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Inositol Polifosfato 5-Fosfatasas/genética , Fosfatidilinositol 4,5-Difosfato/fisiología , Fosfolípidos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente
7.
Curr Opin Plant Biol ; 62: 102044, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33979769

RESUMEN

The detection of molecular signals derived from other organisms is central to the evolutionary success of plants in the colonization of Earth. The sensory coding of these signals is critical for marshaling local and systemic immune responses that keep most invading organisms at bay. Plants detect immune signals inside and outside their cells using receptors. Here, we focus on receptors that function at the cell surface. We present recent work that expands our understanding of the repertoire of immune signals sensed by this family of receptors.


Asunto(s)
Plantas , Receptores de Reconocimiento de Patrones , Inmunidad de la Planta/genética , Plantas/genética
8.
Cell Host Microbe ; 29(4): 620-634.e9, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33713601

RESUMEN

Immune systems respond to "non-self" molecules termed microbe-associated molecular patterns (MAMPs). Microbial genes encoding MAMPs have adaptive functions and are thus evolutionarily conserved. In the presence of a host, these genes are maladaptive and drive antagonistic pleiotropy (AP) because they promote microbe elimination by activating immune responses. The role AP plays in balancing the functionality of MAMP-coding genes against their immunogenicity is unknown. To address this, we focused on an epitope of flagellin that triggers antibacterial immunity in plants. Flagellin is conserved because it enables motility. Here, we decode the immunogenic and motility profiles of this flagellin epitope and determine the spectrum of amino acid mutations that drives AP. We discover two synthetic mutational tracks that undermine the detection activities of a plant flagellin receptor. These tracks generate epitopes with either antagonist or weaker agonist activities. Finally, we find signatures of these tracks layered atop each other in natural Pseudomonads.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/inmunología , Epítopos/genética , Flagelina/genética , Inmunidad , Enfermedades de las Plantas
9.
Cell Host Microbe ; 29(4): 635-649.e9, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33713602

RESUMEN

Immune systems restrict microbial pathogens by identifying "non-self" molecules called microbe-associated molecular patterns (MAMPs). It is unclear how immune responses are tuned to or by MAMP diversity present in commensal microbiota. We systematically studied the variability of commensal peptide derivatives of flagellin (flg22), a MAMP detected by plants. We define substantial functional diversity. Most flg22 peptides evade recognition, while others contribute to evasion by manipulating immunity through antagonism and signal modulation. We establish a paradigm of signal integration, wherein the sequential signaling outputs of the flagellin receptor are separable and allow for reprogramming by commensal-derived flg22 epitope variants. Plant-associated communities are enriched for immune evading flg22 epitopes, but upon physiological stress that represses the immune system, immune-activating flg22 epitopes become enriched. The existence of immune-manipulating epitopes suggests that they evolved to either communicate or utilize the immune system for host colonization and thus can influence commensal microbiota community composition.


Asunto(s)
Epítopos/inmunología , Flagelina/inmunología , Interacciones Microbiota-Huesped/inmunología , Inmunidad de la Planta , Bacterias/genética , Inmunidad , Microbiota , Péptidos , Ralstonia , Simbiosis
10.
Science ; 370(6516): 550-557, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33122378

RESUMEN

Spontaneously arising channels that transport the phytohormone auxin provide positional cues for self-organizing aspects of plant development such as flexible vasculature regeneration or its patterning during leaf venation. The auxin canalization hypothesis proposes a feedback between auxin signaling and transport as the underlying mechanism, but molecular players await discovery. We identified part of the machinery that routes auxin transport. The auxin-regulated receptor CAMEL (Canalization-related Auxin-regulated Malectin-type RLK) together with CANAR (Canalization-related Receptor-like kinase) interact with and phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated PIN polarization, which macroscopically manifests as defects in leaf venation and vasculature regeneration after wounding. The CAMEL-CANAR receptor complex is part of the auxin feedback that coordinates polarization of individual cells during auxin canalization.


Asunto(s)
Arabidopsis/enzimología , Ácidos Indolacéticos/metabolismo , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Quinasas/genética , Factores de Transcripción/metabolismo
11.
Cell Host Microbe ; 27(3): 308-310, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32164838

RESUMEN

The organizational principles of the root immune system are largely uncharacterized. In the February 6, 2020 issue of Cell, Zhou et al. showed roots are built entirely by immunocompetent cells that require distinct instructions to unlock cell-autonomous immune programs. A root cell's developmental identity combined with its spatial distribution fine-tunes immune signal sensitivity, enabling sector-specific immune responses.


Asunto(s)
Inmunidad Celular
12.
Nature ; 572(7768): 270-274, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31291642

RESUMEN

Receptor kinases of the Catharanthus roseus RLK1-like (CrRLK1L) family have emerged as important regulators of plant reproduction, growth and responses to the environment1. Endogenous RAPID ALKALINIZATION FACTOR (RALF) peptides2 have previously been proposed as ligands for several members of the CrRLK1L family1. However, the mechanistic basis of this perception is unknown. Here we report that RALF23 induces a complex between the CrRLK1L FERONIA (FER) and LORELEI (LRE)-LIKE GLYCOSYLPHOSPHATIDYLINOSITOL (GPI)-ANCHORED PROTEIN 1 (LLG1) to regulate immune signalling. Structural and biochemical data indicate that LLG1 (which is genetically important for RALF23 responses) and the related LLG2 directly bind RALF23 to nucleate the assembly of RALF23-LLG1-FER and RALF23-LLG2-FER heterocomplexes, respectively. A conserved N-terminal region of RALF23 is sufficient for the biochemical recognition of RALF23 by LLG1, LLG2 or LLG3, and binding assays suggest that other RALF peptides that share this conserved N-terminal region may be perceived by LLG proteins in a similar manner. Structural data also show that RALF23 recognition is governed by the conformationally flexible C-terminal sides of LLG1, LLG2 and LLG3. Our work reveals a mechanism of peptide perception in plants by GPI-anchored proteins that act together with a phylogenetically unrelated receptor kinase. This provides a molecular framework for understanding how diverse RALF peptides may regulate multiple processes, through perception by distinct heterocomplexes of CrRLK1L receptor kinases and GPI-anchored proteins of the LRE and LLG family.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas Ligadas a GPI/metabolismo , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Fragmentos de Péptidos/metabolismo , Fosfotransferasas/metabolismo , Proteínas de Arabidopsis/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Modelos Moleculares , Mutagénesis , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fosfotransferasas/genética , Docilidad , Unión Proteica/genética , Conformación Proteica , Multimerización de Proteína
13.
Proc Natl Acad Sci U S A ; 116(17): 8525-8534, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30948631

RESUMEN

The rice immune receptor XA21 is activated by the sulfated microbial peptide required for activation of XA21-mediated immunity X (RaxX) produced by Xanthomonas oryzae pv. oryzae (Xoo). Mutational studies and targeted proteomics revealed that the RaxX precursor peptide (proRaxX) is processed and secreted by the protease/transporter RaxB, the function of which can be partially fulfilled by a noncognate peptidase-containing transporter component B (PctB). proRaxX is cleaved at a Gly-Gly motif, yielding a mature peptide that retains the necessary elements for RaxX function as an immunogen and host peptide hormone mimic. These results indicate that RaxX is a prokaryotic member of a previously unclassified and understudied group of eukaryotic tyrosine sulfated ribosomally synthesized, posttranslationally modified peptides (RiPPs). We further demonstrate that sulfated RaxX directly binds XA21 with high affinity. This work reveals a complete, previously uncharacterized biological process: bacterial RiPP biosynthesis, secretion, binding to a eukaryotic receptor, and triggering of a robust host immune response.


Asunto(s)
Proteínas Bacterianas/metabolismo , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Genes Bacterianos/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Redes y Vías Metabólicas/genética , Oryza/inmunología , Oryza/metabolismo , Oryza/microbiología , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Péptidos/química , Péptidos/genética , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/inmunología , Xanthomonas/genética , Xanthomonas/metabolismo , Xanthomonas/patogenicidad
14.
Science ; 364(6436): 178-181, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30975887

RESUMEN

In plants, cell-surface immune receptors sense molecular non-self-signatures. Lipid A of Gram-negative bacterial lipopolysaccharide is considered such a non-self-signature. The receptor kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (LORE) mediates plant immune responses to Pseudomonas and Xanthomonas but not enterobacterial lipid A or lipopolysaccharide preparations. Here, we demonstrate that synthetic and bacterial lipopolysaccharide-copurified medium-chain 3-hydroxy fatty acid (mc-3-OH-FA) metabolites elicit LORE-dependent immunity. The mc-3-OH-FAs are sensed in a chain length- and hydroxylation-specific manner, with free (R)-3-hydroxydecanoic acid [(R)-3-OH-C10:0] representing the strongest immune elicitor. By contrast, bacterial compounds comprising mc-3-OH-acyl building blocks but devoid of free mc-3-OH-FAs-including lipid A or lipopolysaccharide, rhamnolipids, lipopeptides, and acyl-homoserine-lactones-do not trigger LORE-dependent responses. Hence, plants sense low-complexity bacterial metabolites to trigger immune responses.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Ácidos Decanoicos/metabolismo , Pseudomonas aeruginosa/metabolismo , Acil-Butirolactonas/metabolismo , Ácidos Decanoicos/química , Glucolípidos/metabolismo , Lípido A/metabolismo , Lipopéptidos/metabolismo
15.
Sci Data ; 6: 190025, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30806640

RESUMEN

Plants use surface receptors to perceive information about many aspects of their local environment. These receptors physically interact to form both steady state and signalling competent complexes. The signalling events downstream of receptor activation impact both plant developmental and immune responses. Here, we present a comprehensive study of the physical interactions between the extracellular domains of leucine-rich repeat receptor kinases (LRR-RKs) in Arabidopsis. Using a sensitized assay, we tested reciprocal interactions among 200 of the 225 Arabidopsis LRR-RKs for a total search space of 40,000 interactions. Applying a stringent statistical cut-off and requiring that interactions performed well in both bait-prey and prey-bait orientations resulted in a high-confidence set of 567 bidirectional interactions. Additionally, we identified a total of 2,586 unidirectional interactions, which passed our stringent statistical cut-off in only one orientation. These datasets will guide further investigation into the regulatory roles of LRR-RKs in plant developmental and immune signalling decisions.


Asunto(s)
Proteínas de Arabidopsis , Mapeo de Interacción de Proteínas , Proteínas Quinasas/química , Proteínas , Proteínas de Arabidopsis/química , Proteínas Repetidas Ricas en Leucina , Dominios Proteicos , Mapeo de Interacción de Proteínas/métodos , Proteínas Quinasas/fisiología
16.
Nature ; 561(7722): E8, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29973716

RESUMEN

In this Letter, an incorrect version of the Supplementary Information file was inadvertently used, which contained several errors. The details of references 59-65 were missing from the end of the Supplementary Discussion section on page 4. In addition, the section 'Text 3. Y2H on ICD interactions' incorrectly referred to 'Extended Data Fig. 4d' instead of 'Extended Data Fig. 3d' on page 3. Finally, the section 'Text 4. Interaction network analysis' incorrectly referred to 'Fig. 1b and Extended Data Fig. 6' instead of 'Fig. 2b and Extended Data Fig. 7' on page 3. These errors have all been corrected in the Supplementary Information.

17.
Nat Commun ; 9(1): 2312, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899369

RESUMEN

In all organisms, major biological processes are controlled by complex protein-protein interactions networks (interactomes), yet their structural complexity presents major analytical challenges. Here, we integrate a compendium of over 4300 phenotypes with Arabidopsis interactome (AI-1MAIN). We show that nodes with high connectivity and betweenness are enriched and depleted in conditional and essential phenotypes, respectively. Such nodes are located in the innermost layers of AI-1MAIN and are preferential targets of pathogen effectors. We extend these network-centric analyses to Cell Surface Interactome (CSILRR) and predict its 35 most influential nodes. To determine their biological relevance, we show that these proteins physically interact with pathogen effectors and modulate plant immunity. Overall, our findings contrast with centrality-lethality rule, discover fast information spreading nodes, and highlight the structural properties of pathogen targets in two different interactomes. Finally, this theoretical framework could possibly be applicable to other inter-species interactomes to reveal pathogen contact points.


Asunto(s)
Arabidopsis/metabolismo , Mapas de Interacción de Proteínas , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Interacciones Huésped-Patógeno , Modelos Biológicos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Mapeo de Interacción de Proteínas , Proteínas Quinasas/inmunología , Proteínas Quinasas/metabolismo , Pseudomonas syringae/patogenicidad , Biología de Sistemas
18.
Nature ; 553(7688): 342-346, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29320478

RESUMEN

The cells of multicellular organisms receive extracellular signals using surface receptors. The extracellular domains (ECDs) of cell surface receptors function as interaction platforms, and as regulatory modules of receptor activation. Understanding how interactions between ECDs produce signal-competent receptor complexes is challenging because of their low biochemical tractability. In plants, the discovery of ECD interactions is complicated by the massive expansion of receptor families, which creates tremendous potential for changeover in receptor interactions. The largest of these families in Arabidopsis thaliana consists of 225 evolutionarily related leucine-rich repeat receptor kinases (LRR-RKs), which function in the sensing of microorganisms, cell expansion, stomata development and stem-cell maintenance. Although the principles that govern LRR-RK signalling activation are emerging, the systems-level organization of this family of proteins is unknown. Here, to address this, we investigated 40,000 potential ECD interactions using a sensitized high-throughput interaction assay, and produced an LRR-based cell surface interaction network (CSILRR) that consists of 567 interactions. To demonstrate the power of CSILRR for detecting biologically relevant interactions, we predicted and validated the functions of uncharacterized LRR-RKs in plant growth and immunity. In addition, we show that CSILRR operates as a unified regulatory network in which the LRR-RKs most crucial for its overall structure are required to prevent the aberrant signalling of receptors that are several network-steps away. Thus, plants have evolved LRR-RK networks to process extracellular signals into carefully balanced responses.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Leucina/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Arabidopsis/citología , Arabidopsis/inmunología , Arabidopsis/microbiología , Unión Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal
19.
Methods Mol Biol ; 1564: 49-61, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28124246

RESUMEN

Pathway cross-communication cannot be simply tackled by studying isolated signaling systems. Yet understanding how signal transduction pathways attenuate or reinforce each other in vivo is a challenging task. In plants, biosynthesis and signaling of brassinosteroids (BRs) finely regulate growth and defense programs through a complex array of mechanistic and physiological interactions. Conversely, induction of defenses also impacts on the BR biosynthesis at the transcriptional level. In this chapter, we present an experimental framework to study the physiological connection between BR-controlled growth and defenses. We focus on the signaling pathways regulated by the two archetypal cell surface receptors, BRASSINOSTEROID INSENSITIVE1 (BRI1) and FLAGELLIN-SENSITIVE2 (FLS2), to illustrate the signaling nexus of BRs and plant immunity. In Arabidopsis thaliana, these pathways provide one of the very few systems in which the tools and mechanistic details exist to study cross talk at the molecular level.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brasinoesteroides/farmacología , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Inmunidad de la Planta/genética , Proteínas Quinasas/genética , Esteroides Heterocíclicos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Proteínas de Arabidopsis/inmunología , Bioensayo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/inmunología , Proteínas Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Receptor Cross-Talk/inmunología , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/inmunología , Transducción de Señal
20.
Science ; 355(6322): 280-284, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28104888

RESUMEN

The root endodermis forms its extracellular diffusion barrier by developing ringlike impregnations called Casparian strips. A factor responsible for their establishment is the SCHENGEN3/GASSHO1 (SGN3/GSO1) receptor-like kinase. Its loss of function causes discontinuous Casparian strips. SGN3 also mediates endodermal overlignification of other Casparian strip mutants. Yet, without ligand, SGN3 function remained elusive. Here we report that schengen2 (sgn2) is defective in an enzyme sulfating peptide ligands. On the basis of this observation, we identified two stele-expressed peptides (CASPARIAN STRIP INTEGRITY FACTORS, CIF1/2) that complement sgn2 at nanomolar concentrations and induce Casparian strip mislocalization as well as overlignification-all of which depend on SGN3. Direct peptide binding to recombinant SGN3 identifies these peptides as SGN3 ligands. We speculate that CIF1/2-SGN3 is part of a barrier surveillance system, evolved to guarantee effective sealing of the supracellular Casparian strip network.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Sulfotransferasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Difusión , Ligandos , Péptidos/metabolismo , Raíces de Plantas/genética , Unión Proteica , Proteínas Quinasas/genética , Sulfotransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA