Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Res ; 34(9): 1384-1396, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39237300

RESUMEN

Characterizing cell-cell communication and tracking its variability over time are crucial for understanding the coordination of biological processes mediating normal development, disease progression, and responses to perturbations such as therapies. Existing tools fail to capture time-dependent intercellular interactions and primarily rely on databases compiled from limited contexts. We introduce DIISCO, a Bayesian framework designed to characterize the temporal dynamics of cellular interactions using single-cell RNA-sequencing data from multiple time points. Our method utilizes structured Gaussian process regression to unveil time-resolved interactions among diverse cell types according to their coevolution and incorporates prior knowledge of receptor-ligand complexes. We show the interpretability of DIISCO in simulated data and new data collected from T cells cocultured with lymphoma cells, demonstrating its potential to uncover dynamic cell-cell cross talk.


Asunto(s)
Teorema de Bayes , Comunicación Celular , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Linfocitos T/metabolismo , Análisis de Secuencia de ARN/métodos
2.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014338

RESUMEN

Characterizing cell-cell communication and tracking its variability over time is essential for understanding the coordination of biological processes mediating normal development, progression of disease, or responses to perturbations such as therapies. Existing tools lack the ability to capture time-dependent intercellular interactions, such as those influenced by therapy, and primarily rely on existing databases compiled from limited contexts. We present DIISCO, a Bayesian framework for characterizing the temporal dynamics of cellular interactions using single-cell RNA-sequencing data from multiple time points. Our method uses structured Gaussian process regression to unveil time-resolved interactions among diverse cell types according to their co-evolution and incorporates prior knowledge of receptor-ligand complexes. We show the interpretability of DIISCO in simulated data and new data collected from CAR-T cells co-cultured with lymphoma cells, demonstrating its potential to uncover dynamic cell-cell crosstalk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA