RESUMEN
Introduction: N-glycosylation is a post-translational modification that is highly important for the development of monoclonal antibodies (mAbs), as it regulates their biological activity, particularly in terms of immune effector functions. While typically added at the Fc level, approximately 15-25% of circulating antibodies exhibit glycosylation in the Fab domains as well. To the best of our knowledge, cetuximab (Erbitux®) is the only therapeutic antibody presenting Fab glycosylation approved world-wide targeting the epidermal growth factor receptor for the treatment of metastatic-colorectal and head and neck cancers. Additionally, it can trigger antibody-dependent cell cytotoxicity (ADCC), a response that typically is influenced by N-glycosylation at Fc level. However, the role of Fab glycosylation in cetuximab remains poorly understood. Hence, this study aims to investigate the structural role of Fab glycosylation on the conformational behavior of cetuximab. Methods: The study was performed in silico via accelerated molecular dynamics simulations. The commercial cetuximab was compared to its form without Fab glycosylation and structural descriptors were evaluated to establish conformational differences. Results: The results clearly show a correlation between the Fab glycosylation and structural descriptors that may modulate the conformational freedom of the antibody, potentially affecting Fc effector functions, and suggesting a negative role of Fab glycosylation on the interaction with FcγRIIIa. Conclusion: Fab glycosylation of cetuximab is the most critical challenge for biosimilar development, but the differences highlighted in this work with respect to its aglycosylated form can improve the knowledge and represent also a great opportunity to develop novel strategies of biotherapeutics.
Asunto(s)
Cetuximab , Fragmentos Fab de Inmunoglobulinas , Simulación de Dinámica Molecular , Cetuximab/inmunología , Glicosilación , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Simulación por Computador , Antineoplásicos Inmunológicos/inmunología , Antineoplásicos Inmunológicos/farmacología , Conformación Proteica , Receptores ErbB/inmunología , Receptores ErbB/metabolismoRESUMEN
Cytochrome P450 (CYP450) enzymes comprise a highly diverse superfamily of heme-thiolate proteins that responsible for catalyzing over 90 % of enzymatic reactions associated with xenobiotic metabolism in humans. Accurately predicting whether chemicals are substrates or inhibitors of different CYP450 isoforms can aid in pre-selecting hit compounds for the drug discovery process, chemical toxicology studies, and patients treatment planning. In this work, we investigated in silico studies on CYP450s specificity over past twenty years, categorizing these studies into structure-based and ligand-based approaches. Subsequently, we utilized 100 of the most frequently prescribed drugs to test eleven machine learning-based prediction models which were published between 2015 and 2024. We analyzed various aspects of the evaluated models, such as their datasets, algorithms, and performance. This will give readers with a comprehensive overview of these prediction models and help them choose the most suitable one to do prediction. We also provide our insights for future research trend in both structure-based and ligand-based approaches in this field.
RESUMEN
The Organic Cation Transporter Novel 1 (OCTN1), also known as SLC22A4, is widely expressed in various human tissues, and involved in numerous physiological and pathological processes remains. It facilitates the transport of organic cations, zwitterions, with selectivity for positively charged solutes. Ergothioneine, an antioxidant compound, and acetylcholine (Ach) are among its substrates. Given the lack of experimentally solved structures of this protein, this study aimed at generating a reliable 3D model of OCTN1 to shed light on its substrate-binding preferences and the role of sodium in substrate recognition and transport. A chimeric model was built by grafting the large extracellular loop 1 (EL1) from an AlphaFold-generated model onto a homology model. Molecular dynamics simulations revealed domain-specific mobility, with EL1 exhibiting the highest impact on overall stability. Molecular docking simulations identified cytarabine and verapamil as highest affinity ligands, consistent with their known inhibitory effects on OCTN1. Furthermore, MM/GBSA analysis allowed the categorization of substrates into weak, good, and strong binders, with molecular weight strongly correlating with binding affinity to the recognition site. Key recognition residues, including Tyr211, Glu381, and Arg469, were identified through interaction analysis. Ach demonstrated a low interaction energy, supporting the hypothesis of its one-directional transport towards to outside of the membrane. Regarding the role of sodium, our model suggested the involvement of Glu381 in sodium binding. Molecular dynamics simulations of systems at increasing levels of Na+ concentrations revealed increased sodium occupancy around Glu381, supporting experimental data associating Na+ concentration to molecule transport. In conclusion, this study provides valuable insights into the 3D structure of OCTN1, its substrate-binding preferences, and the role of sodium in the recognition. These findings contribute to the understanding of OCTN1 involvement in various physiological and pathological processes and may have implications for drug development and disease management.
Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas de Transporte de Catión Orgánico , Humanos , Proteínas de Transporte de Catión Orgánico/química , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Simportadores/química , Simportadores/metabolismo , Sitios de Unión , Unión Proteica , Ergotioneína/química , Ergotioneína/metabolismo , Sodio/metabolismo , Sodio/química , Simulación por Computador , Acetilcolina/metabolismo , Acetilcolina/química , LigandosRESUMEN
Angiopoietin-like protein 3 (ANGPTL3) is a plasmatic protein that plays a crucial role in lipoprotein metabolism by inhibiting the lipoprotein lipase (LPL) and the endothelial lipase (EL) responsible for the hydrolysis of phospholipids on high-density lipoprotein (HDL). Interest in developing new pharmacological therapies aimed at inhibiting ANGPTL3 has been growing due to the hypolipidemic and antiatherogenic profile observed in its absence. The goal of this study was the in silico characterization of the interaction between ANGPTL3 and EL. Because of the lack of any structural information on both the trimeric coiled-coil N-terminal domain of ANGPTL3 and the EL homodimer as well as data regarding their interactions, the first step was to obtain the three-dimensional model of these two proteins. The models were then refined via molecular dynamics (MD) simulations and used to investigate the interaction mechanism. The analysis of interactions in different docking poses and their refinement via MD allowed the identification of three specific glutamates of ANGPTL3 that recognize a positively charged patch on the surface of EL. These ANGPTL3 key residues, i.e., Glu154, Glu157, and Glu160, could form a putative molecular recognition site for EL. This study paves the way for future investigations aimed at confirming the recognition site and at designing novel inhibitors of ANGPTL3.
Asunto(s)
Proteína 3 Similar a la Angiopoyetina , Lipasa , Proteínas Similares a la Angiopoyetina , Lipasa/metabolismo , Lipoproteína Lipasa/metabolismo , Lipoproteínas HDL/metabolismo , Fosfolípidos/metabolismo , Triglicéridos , Angiopoyetinas/metabolismoRESUMEN
Since the 1980s, it has been known that the administration of ganglioside GM1 to cultured cells induced or enhanced neuronal differentiation. GM1 mechanism of action relies on its direct interaction and subsequent activation of the membrane tyrosine kinase receptor, TrkA, which naturally serves as NGF receptor. This process is mediated by the sole oligosaccharide portion of GM1, the pentasaccharide ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-ß-Gal-(1-4)-ß-Glc. Here we detailed the minimum structural requirements of the oligosaccharide portion of GM1 for mediating the TrkA dependent neuritogenic processing. By in vitro and in silico biochemical approaches, we demonstrated that the minimal portion of GM1 required for the TrkA activation is the inner core of the ganglioside's oligosaccharide ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-ß-Gal. The addition of a sialic acid residue at position 3 of the outer galactose of the GM1 oligosaccharide, which forms the oligosaccharide of GD1a, prevented the interaction with TrkA and the resulting neuritogenesis. On the contrary, the addition of a fucose residue at position 2 of the outer galactose, forming the Fucosyl-GM1 oligosaccharide, did not prevent the TrkA-mediated neuritogenesis.
Asunto(s)
Gangliósido G(M1) , Galactosa , Gangliósido G(M1)/química , Ácido N-Acetilneuramínico , Oligosacáridos/químicaRESUMEN
N-glycosylation plays a key role in modulating the bioactivity of monoclonal antibodies (mAbs), as well as the light chain (LC) isotype can influence their physicochemical properties. However, investigating the impact of such features on mAbs conformational behavior is a big challenge, due to the very high flexibility of these biomolecules. In this work we investigate, by accelerated molecular dynamics (aMD), the conformational behavior of two commercial immunoglobulins G1 (IgG1), representative of κ and λ LCs antibodies, in both their fucosylated and afucosylated forms. Our results show, through the identification of a stable conformation, how the combination of fucosylation and LC isotype modulates the hinge behavior, the Fc conformation and the position of the glycan chains, all factors potentially affecting the binding to the FcγRs. This work also represents a technological enhancement in the conformational exploration of mAbs, making aMD a suitable approach to clarify experimental results.
Asunto(s)
Anticuerpos Monoclonales , Inmunoglobulina G , Glicosilación , TecnologíaRESUMEN
Riboflavin is an essential water-soluble vitamin that needs to be provided through the diet because of the conversion into flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), important cofactors in hundreds of flavoenzymes. The adsorption and distribution of riboflavin is mediated by transmembrane transporters of the SLC52 family, namely RFVT1-3, whose mutations are mainly associated with two diseases, MADD and the Brown-Vialetto-Van Laere syndrome. Interest in RFVTs as pharmacological targets has increased in the last few years due to their overexpression in several cancer cells, which can be exploited both by blocking the uptake of riboflavin into the cancerous cells, and by performing cancer targeted delivery of drugs with a high affinity for RFVTs. In this work, we propose three-dimensional structural models for all three human riboflavin transporters obtained by state-of-the-art artificial intelligence-based methods, which were then further refined with molecular dynamics simulations. Furthermore, two of the most notable mutations concerning RFVT2 and RFVT3 (W31S and N21S, respectively) were investigated studying the interactions between the wild-type and mutated transporters with riboflavin.
Asunto(s)
Inteligencia Artificial , Pérdida Auditiva Sensorineural , Humanos , Riboflavina/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pérdida Auditiva Sensorineural/genética , Relación Estructura-Actividad , Mononucleótido de Flavina , Flavina-Adenina Dinucleótido/metabolismoRESUMEN
NONO and SFPQ are involved in multiple nuclear processes (e.g., pre-mRNA splicing, DNA repair, and transcriptional regulation). These proteins, along with NEAT1, enable paraspeckle formation, thus promoting multiple myeloma cell survival. In this paper, we investigate NONO and SFPQ dimer stability, highlighting the hetero- and homodimer structural differences, and model their interactions with RNA, simulating their binding to a polyG probe mimicking NEAT1guanine-rich regions. We demonstrated in silico that NONO::SFPQ heterodimerization is a more favorable process than homodimer formation. We also show that NONO and SFPQ RRM2 subunits are primarily required for protein-protein interactions with the other DBHS protomer. Simulation of RNA binding to NONO and SFPQ, beside validating RRM1 RNP signature importance, highlighted the role of ß2 and ß4 strand residues for RNA specific recognition. Moreover, we demonstrated the role of the NOPS region and other protomer's RRM2 ß2/ß3 loop in strengthening the interaction with RNA. Our results, having deepened RNA and DBHS dimer interactions, could contribute to the design of small molecules to modulate the activity of these proteins. RNA-mimetics, able to selectively bind to NONO and/or SFPQ RNA-recognition site, could impair paraspeckle formation, thus representing a first step towards the discovery of drugs for multiple myeloma treatment.