Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Transl Psychiatry ; 14(1): 249, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858349

RESUMEN

Phelan-McDermid syndrome (PMDS) arises from mutations in the terminal region of chromosome 22q13, impacting the SHANK3 gene. The resulting deficiency of the postsynaptic density scaffolding protein SHANK3 is associated with autism spectrum disorder (ASD). We examined 12 different PMDS patient and CRISPR-engineered stem cell-derived neuronal models and controls and found that reduced expression of SHANK3 leads to neuronal hyperdifferentiation, increased synapse formation, and decreased neuronal activity. We performed automated imaging-based screening of 7,120 target-annotated small molecules and identified three compounds that rescued SHANK3-dependent neuronal hyperdifferentiation. One compound, Benproperine, rescued the decreased colocalization of Actin Related Protein 2/3 Complex Subunit 2 (ARPC2) with ß-actin and rescued increased synapse formation in SHANK3 deficient neurons when administered early during differentiation. Neuronal activity was only mildly affected, highlighting Benproperine's effects as a neurodevelopmental modulator. This study demonstrates that small molecular compounds that reverse developmental phenotypes can be identified in human neuronal PMDS models.


Asunto(s)
Deleción Cromosómica , Trastornos de los Cromosomas , Proteínas del Tejido Nervioso , Neuronas , Fenotipo , Sinapsis , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Trastornos de los Cromosomas/genética , Sinapsis/efectos de los fármacos , Cromosomas Humanos Par 22/genética , Masculino , Femenino , Diferenciación Celular/efectos de los fármacos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Niño
2.
NPJ Microgravity ; 10(1): 50, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693246

RESUMEN

Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.

3.
Vet Res ; 55(1): 32, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493182

RESUMEN

Outbreaks of West Nile virus (WNV) occur periodically, affecting both human and equine populations. There are no vaccines for humans, and those commercialised for horses do not have sufficient coverage. Specific antiviral treatments do not exist. Many drug discovery studies have been conducted, but since rodent or primate cell lines are normally used, results cannot always be transposed to horses. There is thus a need to develop relevant equine cellular models. Here, we used induced pluripotent stem cells to develop a new in vitro model of WNV-infected equine brain cells suitable for microplate assay, and assessed the cytotoxicity and antiviral activity of forty-one chemical compounds. We found that one nucleoside analog, 2'C-methylcytidine, blocked WNV infection in equine brain cells, whereas other compounds were either toxic or ineffective, despite some displaying anti-viral activity in human cell lines. We also revealed an unexpected proviral effect of statins in WNV-infected equine brain cells. Our results thus identify a potential lead for future drug development and underscore the importance of using a tissue- and species-relevant cellular model for assessing the activity of antiviral compounds.


Asunto(s)
Enfermedades de los Caballos , Células Madre Pluripotentes Inducidas , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Caballos , Humanos , Fiebre del Nilo Occidental/veterinaria , Fiebre del Nilo Occidental/epidemiología , Encéfalo , Antivirales/farmacología , Antivirales/uso terapéutico , Enfermedades de los Caballos/tratamiento farmacológico
4.
NPJ Microgravity ; 10(1): 16, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341423

RESUMEN

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.

5.
NPJ Microgravity ; 9(1): 84, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865644

RESUMEN

The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: "How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?" This is one of the five major scientific issues of the ESA roadmap "Biology in Space and Analogue Environments". Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects.

6.
Stem Cell Res ; 72: 103209, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37769384

RESUMEN

Phelan-McDermid syndrome (PMS) is a rare genetic disease characterized by a global developmental delay with autism spectrum disorder. PMS is caused by loss of function mutations in the SHANK3 gene leading to SHANK3 protein haploinsufficiency. This study describes the generation of isogenic clones produced from one male human embryonic stem cell line with deletions in SHANK3, in a heterozygous or homozygous manner, using CRISPR/Cas9 indel methodology. Differentiation of these clones into different neuronal lineages will help understanding PMS etiology and find treatments for PMD patients. (85/100 words).


Asunto(s)
Trastorno del Espectro Autista , Células Madre Embrionarias Humanas , Humanos , Masculino , Células Madre Embrionarias Humanas/metabolismo , Trastorno del Espectro Autista/genética , Sistemas CRISPR-Cas/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células Clonales/metabolismo
7.
Front Pharmacol ; 14: 1152180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435497

RESUMEN

Introduction: Alteration in the development, maturation, and projection of dopaminergic neurons has been proposed to be associated with several neurological and psychiatric disorders. Therefore, understanding the signals modulating the genesis of human dopaminergic neurons is crucial to elucidate disease etiology and develop effective countermeasures. Methods: In this study, we developed a screening model using human pluripotent stem cells to identify the modulators of dopaminergic neuron genesis. We set up a differentiation protocol to obtained floorplate midbrain progenitors competent to produce dopaminergic neurons and seeded them in a 384-well screening plate in a fully automated manner. Results and Discussion: These progenitors were treated with a collection of small molecules to identify the compounds increasing dopaminergic neuron production. As a proof-of-principle, we screened a library of compounds targeting purine- and adenosine-dependent pathways and identified an adenosine receptor 3 agonist as a candidate molecule to increase dopaminergic neuron production under physiological conditions and in cells invalidated for the HPRT1 gene. This screening model can provide important insights into the etiology of various diseases affecting the dopaminergic circuit development and plasticity and be used to identify therapeutic molecules for these diseases.

8.
Stem Cell Res ; 71: 103144, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37331109

RESUMEN

Lesch-Nyhan disease (LND) is a X-linked genetic disease affecting boys characterized by complex neurological and neuropsychiatric symptoms. LND is caused by loss of function mutations in the HPRT1 gene leading to decrease activity of hypoxanthine-guanine phosphoribosyl transferase enzyme (HGPRT) and altered purine salvage pathway (Lesch and Nyhan, 1964). This study describes the generation of isogenic clones with deletions in HPRT1 produced from one male human embryonic stem cell line using CRISPR/Cas9 strategy. Differentiation of these cells into different neuronal subtypes will help elucidating the neurodevelopmental events leading to LND and develop therapeutic strategies for this devastating neurodevelopmental disorder.


Asunto(s)
Células Madre Embrionarias Humanas , Síndrome de Lesch-Nyhan , Humanos , Masculino , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes , Células Madre Embrionarias Humanas/metabolismo
9.
Viruses ; 14(9)2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36146834

RESUMEN

Although placental small extracellular vesicles (sEVs) are extensively studied in the context of pregnancy, little is known about their role during viral congenital infection, especially at the beginning of pregnancy. In this study, we examined the consequences of human cytomegalovirus (hCMV) infection on sEVs production, composition, and function using an immortalized human cytotrophoblast cell line derived from first trimester placenta. By combining complementary approaches of biochemistry, electron microscopy, and quantitative proteomic analysis, we showed that hCMV infection increases the yield of sEVs produced by cytotrophoblasts and modifies their protein content towards a potential proviral phenotype. We further demonstrate that sEVs secreted by hCMV-infected cytotrophoblasts potentiate infection in naive recipient cells of fetal origin, including human neural stem cells. Importantly, these functional consequences are also observed with sEVs prepared from an ex vivo model of infected histocultures from early placenta. Based on these findings, we propose that placental sEVs could be important actors favoring viral dissemination to the fetal brain during hCMV congenital infection.


Asunto(s)
Infecciones por Citomegalovirus , Vesículas Extracelulares , Citomegalovirus/genética , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Placenta , Embarazo , Proteómica
10.
Cells ; 10(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34943799

RESUMEN

One of the major obstacles to the identification of therapeutic interventions for central nervous system disorders has been the difficulty in studying the step-by-step progression of diseases in neuronal networks that are amenable to drug screening. Recent advances in the field of human pluripotent stem cell (PSC) biology offers the capability to create patient-specific human neurons with defined clinical profiles using reprogramming technology, which provides unprecedented opportunities for both the investigation of pathogenic mechanisms of brain disorders and the discovery of novel therapeutic strategies via drug screening. Many examples not only of the creation of human pluripotent stem cells as models of monogenic neurological disorders, but also of more challenging cases of complex multifactorial disorders now exist. Here, we review the state-of-the art brain cell types obtainable from PSCs and amenable to compound-screening formats. We then provide examples illustrating how these models contribute to the definition of new molecular or functional targets for drug discovery and to the design of novel pharmacological approaches for rare genetic disorders, as well as frequent neurodegenerative diseases and psychiatric disorders.


Asunto(s)
Descubrimiento de Drogas , Modelos Biológicos , Enfermedades del Sistema Nervioso/metabolismo , Células Madre Pluripotentes/metabolismo , Humanos , Neuronas/patología , Enfermedades Raras/genética
11.
J Pathol ; 254(1): 92-102, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33565082

RESUMEN

Congenital infection of the central nervous system by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae, including mental retardation or neurodevelopmental abnormalities. The most severe complications include smooth brain or polymicrogyria, which are both indicative of abnormal migration of neural cells, although the underlying mechanisms remain to be determined. To gain better insight on the pathogenesis of such sequelae, we assessed the expression levels of a set of neurogenesis-related genes, using HCMV-infected human neural stem cells derived from embryonic stem cells (NSCs). Among the 84 genes tested, we found dramatically increased expression of the gene PAFAH1B1, encoding LIS1 (lissencephaly-1), in HCMV-infected versus uninfected NSCs. Consistent with these findings, western blotting and immunofluorescence analyses confirmed the increased levels of LIS1 in HCMV-infected NSCs at the protein level. We next assessed the migratory abilities of HCMV-infected NSCs and observed that infection strongly impaired the migration of NSCs, without detectable effect on their proliferation. Moreover, we observed increased immunostaining for LIS1 in brains of congenitally infected fetuses, but not in control samples, highlighting the clinical relevance of our findings. Of note, PAFAH1B1 mutations (resulting in either haploinsufficiency or gain of function) are primary causes of hereditary neurodevelopmental diseases. Notably, mutations resulting in PAFAH1B1 haploinsufficiency cause classic lissencephaly. Taken together, our findings suggest that PAFAH1B1 is a critical target of HCMV infection. They also shine a new light on the pathophysiological basis of the neurological outcomes of congenital HCMV infection, by suggesting that defective neural cell migration might contribute to the pathogenesis of the neurodevelopmental sequelae of infection. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Infecciones por Citomegalovirus/congénito , Infecciones por Citomegalovirus/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/virología , Encéfalo/metabolismo , Encéfalo/virología , Infecciones por Citomegalovirus/complicaciones , Humanos
12.
J Neuroinflammation ; 17(1): 76, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127025

RESUMEN

BACKGROUND: Tick-borne encephalitis virus (TBEV) is a member of the Flaviviridae family, Flavivirus genus, which includes several important human pathogens. It is responsible for neurological symptoms that may cause permanent disability or death, and, from a medical point of view, is the major arbovirus in Central/Northern Europe and North-Eastern Asia. TBEV tropism is critical for neuropathogenesis, yet little is known about the molecular mechanisms that govern the susceptibility of human brain cells to the virus. In this study, we sought to establish and characterize a new in vitro model of TBEV infection in the human brain and to decipher cell type-specific innate immunity and its relation to TBEV tropism and neuropathogenesis. METHOD: Human neuronal/glial cells were differentiated from neural progenitor cells and infected with the TBEV-Hypr strain. Kinetics of infection, cellular tropism, and cellular responses, including innate immune responses, were characterized by measuring viral genome and viral titer, performing immunofluorescence, enumerating the different cellular types, and determining their rate of infection and by performing PCR array and qRT-PCR. The specific response of neurons and astrocytes was analyzed using the same approaches after enrichment of the neuronal/glial cultures for each cellular subtype. RESULTS: We showed that infection of human neuronal/glial cells mimicked three major hallmarks of TBEV infection in the human brain, namely, preferential neuronal tropism, neuronal death, and astrogliosis. We further showed that these cells conserved their capacity to mount an antiviral response against TBEV. TBEV-infected neuronal/glial cells, therefore, represented a highly relevant pathological model. By enriching the cultures for either neurons or astrocytes, we further demonstrated qualitative and quantitative differential innate immune responses in the two cell types that correlated with their particular susceptibility to TBEV. CONCLUSION: Our results thus reveal that cell type-specific innate immunity is likely to contribute to shaping TBEV tropism for human brain cells. They describe a new in vitro model for in-depth study of TBEV-induced neuropathogenesis and improve our understanding of the mechanisms by which neurotropic viruses target and damage human brain cells.


Asunto(s)
Astrocitos/inmunología , Astrocitos/virología , Encefalitis Transmitida por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/virología , Neuronas/inmunología , Neuronas/virología , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Susceptibilidad a Enfermedades , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Humanos , Inmunidad Innata , Tropismo Viral
13.
JCI Insight ; 5(4)2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-31990683

RESUMEN

Lesch-Nyhan disease (LND) is a rare monogenic disease caused by deficiency of the salvage pathway enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). LND is characterized by severe neuropsychiatric symptoms that currently cannot be treated. Predictive in vivo models are lacking for screening and evaluating candidate drugs because LND-associated neurological symptoms are not recapitulated in HGPRT-deficient animals. Here, we used human neural stem cells and neurons derived from induced pluripotent stem cells (iPSCs) of children affected with LND to identify neural phenotypes of interest associated with HGPRT deficiency to develop a target-agnostic-based drug screening system. We screened more than 3000 molecules and identified 6 pharmacological compounds, all possessing an adenosine moiety, that corrected HGPRT deficiency-associated neuronal phenotypes by promoting metabolism compensations in an HGPRT-independent manner. This included S-adenosylmethionine, a compound that had already been used as a compassionate approach to ease the neuropsychiatric symptoms in LND. Interestingly, these compounds compensate abnormal metabolism in a manner complementary to the gold standard allopurinol and can be provided to patients with LND via simple food supplementation. This experimental paradigm can be easily adapted to other metabolic disorders affecting normal brain development and functioning in the absence of a relevant animal model.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Síndrome de Lesch-Nyhan/tratamiento farmacológico , Síndrome de Lesch-Nyhan/terapia , Células-Madre Neurales/citología , Alopurinol/uso terapéutico , Animales , Estudios de Casos y Controles , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Células-Madre Neurales/enzimología , Fenotipo
14.
Sci Rep ; 9(1): 94, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30643170

RESUMEN

The synaptic protein SHANK3 encodes a multidomain scaffold protein expressed at the postsynaptic density of neuronal excitatory synapses. We previously identified de novo SHANK3 mutations in patients with autism spectrum disorders (ASD) and showed that SHANK3 represents one of the major genes for ASD. Here, we analyzed the pyramidal cortical neurons derived from induced pluripotent stem cells from four patients with ASD carrying SHANK3 de novo truncating mutations. At 40-45 days after the differentiation of neural stem cells, dendritic spines from pyramidal neurons presented variable morphologies: filopodia, thin, stubby and muschroom, as measured in 3D using GFP labeling and immunofluorescence. As compared to three controls, we observed a significant decrease in SHANK3 mRNA levels (less than 50% of controls) in correlation with a significant reduction in dendritic spine densities and whole spine and spine head volumes. These results, obtained through the analysis of de novo SHANK3 mutations in the patients' genomic background, provide further support for the presence of synaptic abnormalities in a subset of patients with ASD.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/patología , Mutación , Proteínas del Tejido Nervioso/genética , Células Piramidales/citología , Células Piramidales/patología , Diferenciación Celular , Dendritas/patología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Microscopía Fluorescente , Proteínas del Tejido Nervioso/deficiencia , Eliminación de Secuencia
15.
Biol Psychiatry ; 84(4): 239-252, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29428674

RESUMEN

BACKGROUND: Prenatal exposure to androgens during brain development in male individuals may participate to increase their susceptibility to develop neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability. However, little is known about the action of androgens in human neural cells. METHODS: We used human neural stem cells differentiated from embryonic stem cells to investigate targets of androgens. RESULTS: RNA sequencing revealed that treatment with dihydrotestosterone (DHT) leads to subtle but significant changes in the expression of about 200 genes, encoding proteins of extracellular matrix or involved in signal transduction of growth factors (e.g., insulin/insulin growth factor 1). We showed that the most differentially expressed genes (DEGs), RGCC, RNF144B, NRCAM, TRIM22, FAM107A, IGFBP5, and LAMA2, are reproducibly regulated by different androgens in different genetic backgrounds. We showed, by overexpressing the androgen receptor in neuroblastoma cells SH-SY5Y or knocking it down in human neural stem cells, that this regulation involves the androgen receptor. A chromatin immunoprecipitation combined with direct sequencing analysis identified androgen receptor-bound sequences in nearly half of the DHT-DEGs and in numerous other genes. DHT-DEGs appear enriched in genes involved in ASD (ASXL3, NLGN4X, etc.), associated with ASD (NRCAM), or differentially expressed in patients with ASD (FAM107A, IGFBP5). Androgens increase human neural stem cell proliferation and survival in nutrient-deprived culture conditions, with no detectable effect on regulation of neurite outgrowth. CONCLUSIONS: We characterized androgen action in neural progenitor cells, identifying DHT-DEGs that appear to be enriched in genes related to ASD. We also showed that androgens increase proliferation of neuronal precursors and protect them from death during their differentiation in nutrient-deprived conditions.


Asunto(s)
Andrógenos/farmacología , Trastorno del Espectro Autista/genética , Dihidrotestosterona/farmacología , Expresión Génica/efectos de los fármacos , Células-Madre Neurales/metabolismo , Trastorno del Espectro Autista/etiología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular , Células Cultivadas , Femenino , Humanos , Masculino , Células-Madre Neurales/efectos de los fármacos , Receptores Androgénicos/metabolismo , Análisis de Secuencia de ARN , Factores Sexuales
16.
EBioMedicine ; 9: 293-305, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27333044

RESUMEN

Autism spectrum disorders affect millions of individuals worldwide, but their heterogeneity complicates therapeutic intervention that is essentially symptomatic. A versatile yet relevant model to rationally screen among hundreds of therapeutic options would help improving clinical practice. Here we investigated whether neurons differentiated from pluripotent stem cells can provide such a tool using SHANK3 haploinsufficiency as a proof of principle. A library of compounds was screened for potential to increase SHANK3 mRNA content in neurons differentiated from control human embryonic stem cells. Using induced pluripotent stem cell technology, active compounds were then evaluated for efficacy in correcting dysfunctional networks of neurons differentiated from individuals with deleterious point mutations of SHANK3. Among 202 compounds tested, lithium and valproic acid showed the best efficacy at corrected SHANK3 haploinsufficiency associated phenotypes in cellulo. Lithium pharmacotherapy was subsequently provided to one patient and, after one year, an encouraging decrease in autism severity was observed. This demonstrated that pluripotent stem cell-derived neurons provide a novel cellular paradigm exploitable in the search for specific disease-modifying treatments.


Asunto(s)
Trastorno del Espectro Autista/patología , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Células Madre Pluripotentes/citología , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/metabolismo , Diferenciación Celular , Células Cultivadas , Haploinsuficiencia/efectos de los fármacos , Células Madre Embrionarias Humanas , Humanos , Litio/farmacología , Litio/uso terapéutico , Masculino , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Neuronas/citología , Fenotipo , Células Madre Pluripotentes/metabolismo , ARN Mensajero/metabolismo , Índice de Severidad de la Enfermedad , Transcriptoma/efectos de los fármacos , Ácido Valproico/farmacología
17.
PLoS Pathog ; 12(4): e1005547, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27078877

RESUMEN

Congenital infection by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae of the central nervous system, including sensorineural deafness, cerebral palsies or devastating neurodevelopmental abnormalities (0.1% of all births). To gain insight on the impact of HCMV on neuronal development, we used both neural stem cells from human embryonic stem cells (NSC) and brain sections from infected fetuses and investigated the outcomes of infection on Peroxisome Proliferator-Activated Receptor gamma (PPARγ), a transcription factor critical in the developing brain. We observed that HCMV infection dramatically impaired the rate of neuronogenesis and strongly increased PPARγ levels and activity. Consistent with these findings, levels of 9-hydroxyoctadecadienoic acid (9-HODE), a known PPARγ agonist, were significantly increased in infected NSCs. Likewise, exposure of uninfected NSCs to 9-HODE recapitulated the effect of infection on PPARγ activity. It also increased the rate of cells expressing the IE antigen in HCMV-infected NSCs. Further, we demonstrated that (1) pharmacological activation of ectopically expressed PPARγ was sufficient to induce impaired neuronogenesis of uninfected NSCs, (2) treatment of uninfected NSCs with 9-HODE impaired NSC differentiation and (3) treatment of HCMV-infected NSCs with the PPARγ inhibitor T0070907 restored a normal rate of differentiation. The role of PPARγ in the disease phenotype was strongly supported by the immunodetection of nuclear PPARγ in brain germinative zones of congenitally infected fetuses (N = 20), but not in control samples. Altogether, our findings reveal a key role for PPARγ in neurogenesis and in the pathophysiology of HCMV congenital infection. They also pave the way to the identification of PPARγ gene targets in the infected brain.


Asunto(s)
Infecciones por Citomegalovirus/congénito , Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/metabolismo , Células-Madre Neurales/virología , Neurogénesis/fisiología , PPAR gamma/metabolismo , Western Blotting , Diferenciación Celular/fisiología , Inmunoprecipitación de Cromatina , Cromatografía Líquida de Alta Presión , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía Electrónica de Transmisión , Células-Madre Neurales/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem
18.
J Vis Exp ; (104)2015 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-26484791

RESUMEN

Dendritic spines are small protrusions that correspond to the post-synaptic compartments of excitatory synapses in the central nervous system. They are distributed along the dendrites. Their morphology is largely dependent on neuronal activity, and they are dynamic. Dendritic spines express glutamatergic receptors (AMPA and NMDA receptors) on their surface and at the levels of postsynaptic densities. Each spine allows the neuron to control its state and local activity independently. Spine morphologies have been extensively studied in glutamatergic pyramidal cells of the brain cortex, using both in vivo approaches and neuronal cultures obtained from rodent tissues. Neuropathological conditions can be associated to altered spine induction and maturation, as shown in rodent cultured neurons and one-dimensional quantitative analysis (1). The present study describes a protocol for the 3D quantitative analysis of spine morphologies using human cortical neurons derived from neural stem cells (late cortical progenitors). These cells were initially obtained from induced pluripotent stem cells. This protocol allows the analysis of spine morphologies at different culture periods, and with possible comparison between induced pluripotent stem cells obtained from control individuals with those obtained from patients with psychiatric diseases.


Asunto(s)
Espinas Dendríticas/fisiología , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Células Piramidales/citología , Dendritas/fisiología , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Humanos , Microscopía Confocal , Células Madre Pluripotentes/citología , Células Piramidales/metabolismo , Receptores de N-Metil-D-Aspartato , Sinapsis/fisiología
19.
Stem Cells ; 33(12): 3666-72, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26299682

RESUMEN

Human pluripotent stem cell-derived neural stem cells offer unprecedented opportunities for producing specific types of neurons for several biomedical applications. However, to achieve it, protocols of production and amplification of human neural stem cells need to be standardized, cost effective, and safe. This means that small molecules should progressively replace the use of media containing cocktails of protein-based growth factors. Here we have conducted a phenotypical screening to identify pathways involved in the regulation of hNSC self-renewal. We analyzed 80 small molecules acting as kinase inhibitors and identified compounds of the 5-isoquinolinesulfonamide family, described as protein kinase A (PKA) and protein kinase G inhibitors, as candidates to support hNSC self-renewal. Investigating the mode of action of these compounds, we found that modulation of PKA activity was central in controlling the choice between self-renewal or terminal neuronal differentiation of hNSC. We finally demonstrated that the pharmacological inhibition of PKA using the small molecule HA1004 was sufficient to support the full derivation, propagation, and long-term maintenance of stable hNSC in absence of any other extrinsic signals. Our results indicated that tuning of PKA activity is a core mechanism regulating hNSC self-renewal and differentiation and delineate the minimal culture media requirement to maintain undifferentiated hNSC in vitro.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Células-Madre Neurales/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Humanos , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/enzimología , Inhibidores de Proteínas Quinasas/química
20.
PLoS Pathog ; 11(4): e1004859, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25923687

RESUMEN

It is well established that persistent viral infection may impair cellular function of specialized cells without overt damage. This concept, when applied to neurotropic viruses, may help to understand certain neurologic and neuropsychiatric diseases. Borna disease virus (BDV) is an excellent example of a persistent virus that targets the brain, impairs neural functions without cell lysis, and ultimately results in neurobehavioral disturbances. Recently, we have shown that BDV infects human neural progenitor cells (hNPCs) and impairs neurogenesis, revealing a new mechanism by which BDV may interfere with brain function. Here, we sought to identify the viral proteins and molecular pathways that are involved. Using lentiviral vectors for expression of the bdv-p and bdv-x viral genes, we demonstrate that the phosphoprotein P, but not the X protein, diminishes human neurogenesis and, more particularly, GABAergic neurogenesis. We further reveal a decrease in pro-neuronal factors known to be involved in neuronal differentiation (ApoE, Noggin, TH and Scg10/Stathmin2), demonstrating that cellular dysfunction is associated with impairment of specific components of the molecular program that controls neurogenesis. Our findings thus provide the first evidence that a viral protein impairs GABAergic human neurogenesis, a process that is dysregulated in several neuropsychiatric disorders. They improve our understanding of the mechanisms by which a persistent virus may interfere with brain development and function in the adult.


Asunto(s)
Virus de la Enfermedad de Borna/fisiología , Regulación hacia Abajo , Neuronas GABAérgicas/metabolismo , Interacciones Huésped-Patógeno , Neurogénesis , Fosfoproteínas/metabolismo , Proteínas Estructurales Virales/metabolismo , Transporte Activo de Núcleo Celular , Apolipoproteínas E/antagonistas & inhibidores , Apolipoproteínas E/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Enfermedad de Borna/metabolismo , Enfermedad de Borna/patología , Enfermedad de Borna/virología , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Proliferación Celular , Células Cultivadas , Francia , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/patología , Neuronas GABAérgicas/virología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Células Madre Embrionarias Humanas/virología , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidad , Estatmina , Tirosina 3-Monooxigenasa/antagonistas & inhibidores , Tirosina 3-Monooxigenasa/metabolismo , Proteínas Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA