Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biomedicines ; 11(11)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-38001969

RESUMEN

The ribosome is a macromolecular complex composed of RNA and proteins that interact through an integrated and interconnected network to preserve its ancient core activities. In this review, we emphasize the pivotal role played by RNA-binding proteins as a driving force in the evolution of the current form of the ribosome, underscoring their importance in ensuring accurate protein synthesis. This category of proteins includes both ribosomal proteins and ribosome biogenesis factors. Impairment of their RNA-binding activity can also lead to ribosomopathies, which is a group of disorders characterized by defects in ribosome biogenesis that are detrimental to protein synthesis and cellular homeostasis. A comprehensive understanding of these intricate processes is essential for elucidating the mechanisms underlying the resulting diseases and advancing potential therapeutic interventions.

2.
Exp Dermatol ; 32(6): 787-798, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36789506

RESUMEN

Hailey-Hailey disease (HHD) is a rare autosomal dominantly inherited disorder caused by mutations in the ATP2C1 gene that encodes an adenosine triphosphate (ATP)-powered calcium channel pump. HHD is characterized by impaired epidermal cell-to-cell adhesion and defective keratinocyte growth/differentiation. The mechanism by which mutant ATP2C1 causes HHD is unknown and current treatments for affected individuals do not address the underlying defects and are ineffective. Notch signalling is a direct determinant of keratinocyte growth and differentiation. We found that loss of ATP2C1 leads to impaired Notch1 signalling, thus deregulation of the Notch signalling response is therefore likely to contribute to HHD manifestation. NOTCH1 is a transmembrane receptor and upon ligand binding, the intracellular domain (NICD) translocates to the nucleus activating its target genes. In the context of HHD, we found that loss of ATP2C1 function promotes upregulation of the active NOTCH1 protein (NICD-Val1744). Here, deeply exploring this aspect, we observed that NOTCH1 activation is not associated with the transcriptional enhancement of its targets. Moreover, in agreement with these results, we found a cytoplasmic localization of NICD-Val1744. We have also observed that ATP2C1-loss is associated with the degradation of NICD-Val1744 through the lysosomal/proteasome pathway. These results show that ATP2C1-loss could promote a mechanism by which NOTCH1 is endocytosed and degraded by the cell membrane. The deregulation of this phenomenon, finely regulated in physiological conditions, could in HHD lead to the deregulation of NOTCH1 with alteration of skin homeostasis and disease manifestation.


Asunto(s)
Pénfigo Familiar Benigno , Humanos , Pénfigo Familiar Benigno/genética , Pénfigo Familiar Benigno/metabolismo , Piel/metabolismo , Queratinocitos/metabolismo , Mutación , Epidermis/metabolismo , ATPasas Transportadoras de Calcio/genética , ATPasas Transportadoras de Calcio/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
3.
Front Microbiol ; 12: 631297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841359

RESUMEN

The translation factor IF6 is a protein of about 25 kDa shared by the Archaea and the Eukarya but absent in Bacteria. It acts as a ribosome anti-association factor that binds to the large subunit preventing the joining to the small subunit. It must be released from the large ribosomal subunit to permit its entry to the translation cycle. In Eukarya, this process occurs by the coordinated action of the GTPase Efl1 and the docking protein SBDS. Archaea do not possess a homolog of the former factor while they have a homolog of SBDS. In the past, we have determined the function and ribosomal localization of the archaeal (Sulfolobus solfataricus) IF6 homolog (aIF6) highlighting its similarity to the eukaryotic counterpart. Here, we analyzed the mechanism of aIF6 release from the large ribosomal subunit. We found that, similarly to the Eukarya, the detachment of aIF6 from the 50S subunit requires a GTPase activity which involves the archaeal elongation factor 2 (aEF-2). However, the release of aIF6 from the 50S subunits does not require the archaeal homolog of SBDS, being on the contrary inhibited by its presence. Molecular modeling, using published structural data of closely related homologous proteins, elucidated the mechanistic interplay between the aIF6, aSBDS, and aEF2 on the ribosome surface. The results suggest that a conformational rearrangement of aEF2, upon GTP hydrolysis, promotes aIF6 ejection. On the other hand, aSBDS and aEF2 share the same binding site, whose occupation by SBDS prevents aEF2 binding, thereby inhibiting aIF6 release.

4.
Int J Mol Sci ; 21(13)2020 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-32605139

RESUMEN

The eukaryotic translation initiation factor 5A (eIF5A) is an essential protein for the viability of the cells whose proposed function is to prevent the stalling of the ribosomes during translation elongation. eIF5A activity requires a unique and functionally essential post-translational modification, the change of a lysine to hypusine. eIF5A is recognized as a promoter of cell proliferation, but it has also been suggested to induce apoptosis. To date, the precise molecular mechanism through which eIF5A affects these processes remains elusive. In the present study, we explored whether eIF5A is involved in controlling the stress-induced expression of the key cellular regulator p53. Our results show that treatment of HCT-116 colon cancer cells with the deoxyhypusine (DHS) inhibitor N1-guanyl-1,7-diamineheptane (GC7) caused both inhibition of eIF5A hypusination and a significant reduction of p53 expression in UV-treated cells, and that eIF5A controls p53 expression at the level of protein synthesis. Furthermore, we show that treatment with GC7 followed by UV-induced stress counteracts the pro-apoptotic process triggered by p53 up-regulation. More in general, the importance of eIF5A in the cellular stress response is illustrated by the finding that exposure to UV light promotes the binding of eIF5A to the ribosomes, whereas UV treatment complemented by the presence of GC7 inhibits such binding, allowing a decrease of de novo synthesis of p53 protein.


Asunto(s)
Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Lisina/análogos & derivados , Factores de Iniciación de Péptidos/química , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/química , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/genética , Apoptosis , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Humanos , Lisina/química , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
5.
J Biol Chem ; 294(47): 17941-17950, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31597699

RESUMEN

Notch signaling plays a complex role in carcinogenesis, and its signaling pathway has both tumor suppressor and oncogenic components. To identify regulators that might control this dual activity of NOTCH1, we screened a chemical library targeting kinases and identified Polo-like kinase 1 (PLK1) as one of the kinases involved in arsenite-induced NOTCH1 down-modulation. As PLK1 activity drives mitotic entry but also is inhibited after DNA damage, we investigated the PLK1-NOTCH1 interplay in the G2 phase of the cell cycle and in response to DNA damage. Here, we found that PLK1 regulates NOTCH1 expression at G2/M transition. However, when cells in G2 phase are challenged with DNA damage, PLK1 is inhibited to prevent entry into mitosis. Interestingly, we found that the interaction between NOTCH1 and PLK1 is functionally important during the DNA damage response, as we found that whereas PLK1 activity is inhibited, NOTCH1 expression is maintained during DNA damage response. During genotoxic stress, cellular transformation requires that promitotic activity must override DNA damage checkpoint signaling to drive proliferation. Interestingly, we found that arsenite-induced genotoxic stress causes a PLK1-dependent signaling response that antagonizes the involvement of NOTCH1 in the DNA damage checkpoint. Taken together, our data provide evidence that Notch signaling is altered but not abolished in SCC cells. Thus, it is also important to recognize that Notch plasticity might be modulated and could represent a key determinant to switch on/off either the oncogenic or tumor suppressor function of Notch signaling in a single type of tumor.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptor Notch1/metabolismo , Apoptosis/efectos de los fármacos , Arsenitos/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Fase G2/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Mitosis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Especificidad por Sustrato/efectos de los fármacos , Quinasa Tipo Polo 1
6.
Archaea ; 2019: 9848253, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30886540

RESUMEN

A system is described which permits the efficient synthesis of proteins in vitro at high temperature. It is based on the use of an unfractionated cell lysate (S30) from Sulfolobus solfataricus previously well characterized in our laboratory for translation of pretranscribed mRNAs, and now adapted to perform coupled transcription and translation. The essential element in this expression system is a strong promoter derived from the S. solfataricus 16S/23S rRNA-encoding gene, from which specific mRNAs may be transcribed with high efficiency. The synthesis of two different proteins is reported, including the S. solfataricus DNA-alkylguanine-DNA-alkyl-transferase protein (SsOGT), which is shown to be successfully labeled with appropriate fluorescent substrates and visualized in cell extracts. The simplicity of the experimental procedure and specific activity of the proteins offer a number of possibilities for the study of structure-function relationships of proteins.


Asunto(s)
Mezclas Complejas/metabolismo , Biosíntesis de Proteínas , Sulfolobus solfataricus/enzimología , Transcripción Genética , Sistema Libre de Células , ADN de Archaea/genética , Calor , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética
7.
J Transl Med ; 17(1): 20, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30634982

RESUMEN

BACKGROUND: Melanoma cells develop adaptive responses in order to cope with particular conditions of tumor microenvironment, characterized by stress conditions and deregulated proliferation. Recently, the interplay between the stress response and the gene expression programs leading to metastatic spread has been reported. METHODS: We evaluated levels and localization of eIF2α/peIF2α in V600BRAF and wtBRAF metastatic melanoma cell lines by means of western blot and confocal microscopy analyses. Furthermore, we performed a sequence analyses and structure and dynamics studies of eIF2α protein to reveal the role of eIF2α and its correlations in different pathways involved in the invasive phase of melanoma. RESULTS: We found peIF2α both in cytoplasm and nucleus. Nuclear localization was more represented in V600BRAF melanoma cell lines. Our studies on eIF2α protein sequence indicated the presence of a predicted bipartite NLS as well as a nuclear export signal NES and an S1 domain, typical of RNA interacting proteins. Furthermore, we found high levels of transcription factor EB (TFEB), a component of the MiT/TFE family, and low ß-catenin levels in V600BRAF cells. CONCLUSIONS: Based on our results, we suggest that peIF2α nuclear localization can be crucial in ER stress response and in driving the metastatic spread of melanoma, through lysosomal signaling and Wnt/ß-catenin pathway. In conclusion, this is the first evidence of nuclear localization of peIF2α, representing a possible target for future therapeutic approaches for metastatic melanoma.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Melanoma/metabolismo , Biosíntesis de Proteínas , Neoplasias Cutáneas/metabolismo , Secuencia de Aminoácidos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular Tumoral , Factor 2 Eucariótico de Iniciación/química , Humanos , Fosforilación , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , beta Catenina/metabolismo , Melanoma Cutáneo Maligno
8.
Proteome Sci ; 15: 18, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28785172

RESUMEN

BACKGROUND: Changes in iron metabolism frequently accompany HIV-1 infection. However, while many clinical and in vitro studies report iron overload exacerbates the development of infection, many others have found no correlation. Therefore, the multi-faceted role of iron in HIV-1 infection remains enigmatic. METHODS: RT-qPCR targeting the LTR region, gag, Tat and Rev were performed to measure the levels of viral RNAs in response to iron overload. Spike-in SILAC proteomics comparing i) iron-treated, ii) HIV-1-infected and iii) HIV-1-infected/iron treated T lymphocytes was performed to define modifications in the host cell proteome. Data from quantitative proteomics were integrated with the HIV-1 Human Interaction Database for assessing any viral cofactors modulated by iron overload in infected T lymphocytes. RESULTS: Here, we demonstrate that the iron overload down-regulates HIV-1 gene expression by decreasing the levels of viral RNAs. In addition, we found that iron overload modulates the expression of many viral cofactors. Among them, the downregulation of the REV cofactor eIF5A may correlate with the iron-induced inhibition of HIV-1 gene expression. Therefore, we demonstrated that eiF5A downregulation by shRNA resulted in a significant decrease of Nef levels, thus hampering HIV-1 replication. CONCLUSIONS: Our study indicates that HIV-1 cofactors influenced by iron metabolism represent potential targets for antiretroviral therapy and suggests eIF5A as a selective target for drug development.

9.
BMC Cancer ; 15: 131, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25886394

RESUMEN

BACKGROUND: Eukaryotic Initiation factor 6 (eIF6) is a peculiar translation initiation factor that binds to the large 60S ribosomal subunits, controlling translation initiation and participating in ribosome biogenesis. In the past, knowledge about the mechanisms adopted by the cells for controlling protein synthesis by extracellular stimuli has focused on two translation initiation factors (eIF4E and eIF2), however, recent data suggest eIF6 as a newcomer in the control of downstream of signal transduction pathways. eIF6 is over-expressed in tumors and its decreased expression renders cells less prone to tumor growth. A previous work from our laboratory has disclosed that over-expression of eIF6 in transformed cell lines markedly increased cell migration and invasion. METHODS: Here, we performed a quantitative proteomic analysis of membrane-associated proteins in A2780 ovarian cancer cells over-expressing eIF6. Differentially expressed proteins upon eIF6 overproduction were further investigated in silico by Ingenuity Pathway Analysis (IPA). RT-qPCR and Western blot were performed in order to validate the proteomic data. Furthermore, the effects of a potent and selective inhibitor ML-141 in A2780 cells were evaluated using transwell migration assay. Finally, we explored the effects of eIF6 over-expression on WM793 primary melanoma cell lines. RESULTS: We demonstrated that: (i) the genes up-regulated upon eIF6 overproduction mapped to a functional network corresponding to cellular movements in a highly significant way; (ii) cdc42 plays a pivotal role as an effector of enhanced migratory phenotype induced upon eIF6 over-expression; (iii) the variations in abundance observed for cdc42 protein occur at a post-transcriptional level; (iv) the increased cell migration/invasion upon eIF6 over-expression was generalizable to other cell line models. CONCLUSIONS: Collectively, our data confirm and further extend the role of eIF6 in enhancing cell migration/invasion. We show that a number of membrane-associated proteins indeed vary in abundance upon eIF6 over-expression, and that the up-regulated proteins can be located within a functional network controlling cell motility and tumor metastasis. Full understanding of the role eIF6 plays in the metastatic process is important, also in view of the fact that this factor is a potentially druggable target to be exploited for new anti-cancer therapies.


Asunto(s)
Factores Eucarióticos de Iniciación/biosíntesis , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/biosíntesis , Invasividad Neoplásica , Movimiento Celular/fisiología , Femenino , Humanos , Invasividad Neoplásica/patología
10.
Biochem J ; 462(2): 373-84, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24825021

RESUMEN

MBF1 (multi-protein bridging factor 1) is a protein containing a conserved HTH (helix-turn-helix) domain in both eukaryotes and archaea. Eukaryotic MBF1 has been reported to function as a transcriptional co-activator that physically bridges transcription regulators with the core transcription initiation machinery of RNA polymerase II. In addition, MBF1 has been found to be associated with polyadenylated mRNA in yeast as well as in mammalian cells. aMBF1 (archaeal MBF1) is very well conserved among most archaeal lineages; however, its function has so far remained elusive. To address this, we have conducted a molecular characterization of this aMBF1. Affinity purification of interacting proteins indicates that aMBF1 binds to ribosomal subunits. On sucrose density gradients, aMBF1 co-fractionates with free 30S ribosomal subunits as well as with 70S ribosomes engaged in translation. Binding of aMBF1 to ribosomes does not inhibit translation. Using NMR spectroscopy, we show that aMBF1 contains a long intrinsically disordered linker connecting the predicted N-terminal zinc-ribbon domain with the C-terminal HTH domain. The HTH domain, which is conserved in all archaeal and eukaryotic MBF1 homologues, is directly involved in the association of aMBF1 with ribosomes. The disordered linker of the ribosome-bound aMBF1 provides the N-terminal domain with high flexibility in the aMBF1-ribosome complex. Overall, our findings suggest a role for aMBF1 in the archaeal translation process.


Asunto(s)
Proteínas Arqueales/metabolismo , Subunidades Ribosómicas Pequeñas de Archaea/metabolismo , Sulfolobus solfataricus/metabolismo , Transactivadores/metabolismo , Secuencias de Aminoácidos , Proteínas Arqueales/química , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Subunidades Ribosómicas Pequeñas de Archaea/química , Transactivadores/química
11.
Biochem Soc Trans ; 41(1): 350-5, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23356310

RESUMEN

The formation of the translation initiation complex represents the rate-limiting step in protein synthesis. Translation initiation in the crenarchaeon Sulfolobus solfataricus depends on several translation IFs (initiation factors), some of which have eukaryal but no bacterial counterparts. In the present paper, we review the current knowledge of the structure, function and evolution of the IFs in S. solfataricus in the context of eukaryotic and bacterial orthologues. Despite similarities between eukaryotic and S. solfataricus IFs, the sequence of events in translation initiation in S. solfataricus follows the bacterial mode.


Asunto(s)
Biosíntesis de Proteínas , Sulfolobus solfataricus/genética , Evolución Molecular , Factores de Iniciación de Péptidos/genética
12.
PLoS One ; 7(2): e32047, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22348144

RESUMEN

A growing body of evidence indicates that protein factors controlling translation play an important role in tumorigenesis. The protein known as eIF6 is a ribosome anti-association factor that has been implicated in translational initiation and in ribosome synthesis. Over-expression of eIF6 is observed in many natural tumours, and causes developmental and differentiation defects in certain animal models. Here we show that the transcription of the gene encoding eIF6 is modulated by the receptor Notch-1, a protein involved in embryonic development and cell differentiation, as well as in many neoplasms. Inhibition of Notch-1 signalling by γ-secretase inhibitors slowed down cell-cycle progression and reduced the amount of eIF6 in lymphoblastoid and ovarian cancer cell lines. Cultured ovarian cancer cell lines engineered to stably over-expressing eIF6 did not show significant changes in proliferation rate, but displayed an enhanced motility and invasive capacity. Inhibition of Notch-1 signalling in the cells over-expressing eIF6 was effective in slowing down the cell cycle, but did not reduce cell migration and invasion. On the whole, the results suggest that eIF6 is one of the downstream effectors of Notch-1 in the pathway that controls cell motility and invasiveness.


Asunto(s)
Movimiento Celular , Invasividad Neoplásica , Factores de Iniciación de Péptidos/fisiología , Receptor Notch1/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Ováricas/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Transducción de Señal
13.
J Bacteriol ; 193(11): 2861-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21478358

RESUMEN

HflX GTPases are found in all three domains of life, the Bacteria, Archaea, and Eukarya. HflX from Escherichia coli has been shown to bind to the 50S ribosomal subunit in a nucleotide-dependent manner, and this interaction strongly stimulates its GTPase activity. We recently determined the structure of an HflX ortholog from the archaeon Sulfolobus solfataricus (SsoHflX). It revealed the presence of a novel HflX domain that might function in RNA binding and is linked to a canonical G domain. This domain arrangement is common to all archaeal, bacterial, and eukaryotic HflX GTPases. This paper shows that the archaeal SsoHflX, like its bacterial orthologs, binds to the 50S ribosomal subunit. This interaction does not depend on the presence of guanine nucleotides. The HflX domain is sufficient for ribosome interaction. Binding appears to be restricted to free 50S ribosomal subunits and does not occur with 70S ribosomes engaged in translation. The fingerprint (1)H-(15)N heteronuclear correlation nuclear magnetic resonance (NMR) spectrum of SsoHflX reveals a large number of well-resolved resonances that are broadened upon binding to the 50S ribosomal subunit. The GTPase activity of SsoHflX is stimulated by crude fractions of 50S ribosomal subunits, but this effect is lost with further high-salt purification of the 50S ribosomal subunits, suggesting that the stimulation depends on an extrinsic factor bound to the 50S ribosomal subunit. Our results reveal common properties but also marked differences between archaeal and bacterial HflX proteins.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Nucleótidos/metabolismo , Subunidades Ribosómicas Grandes de Archaea/metabolismo , Sulfolobus solfataricus/enzimología , Espectroscopía de Resonancia Magnética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas
14.
Biochem Soc Trans ; 39(1): 89-93, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21265752

RESUMEN

Initiation is a critical step in translation, during which the ribosome lands on the start codon and sets the correct reading frame for mRNA decoding. The rate and efficiency of translation are largely determined by initiation, which is therefore the preferred target of translation regulation mechanisms. Initiation has incurred an extensive evolutionary divergence among the primary domains of cell descent. The Archaea, albeit prokaryotes, have an initiation mechanism and apparatus more complex than those of the Bacteria; the molecular details of archaeal initiation are just beginning to be unravelled. The most notable aspects of archaeal initiation are the presence of two, perhaps three, distinct mechanisms for mRNA-ribosome interaction and the presence of a relatively large set of IFs (initiation factors), several of which are shared exclusively with the Eukarya. Among these, the protein termed a/eIF2 (archaeal/eukaryotic IF2) and aIF6 (archaeal IF6) are of special interest, since they appear to play key regulatory roles in the Eukarya. Studies of the function of these factors in Archaea have uncovered new features that will help to elucidate their conserved and domain-specific functions.


Asunto(s)
Archaea/metabolismo , Biosíntesis de Proteínas , Archaea/genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribosomas/metabolismo
15.
J Proteome Res ; 9(5): 2496-507, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20192274

RESUMEN

Sequenced genomes often reveal interrupted coding sequences that complicate the annotation process and the subsequent functional characterization of the genes. In the past, interrupted genes were generally considered to be the result of sequencing errors or pseudogenes, that is, gene remnants with little or no biological importance. However, recent lines of evidence support the hypothesis that these coding sequences can be functional; thus, it is crucial to understand whether interrupted genes are expressed in vivo. We addressed this issue by experimentally demonstrating the existence of functional disrupted genes in archaeal genomes. We discovered previously unknown disrupted genes that have interrupted homologues in distantly related species of archaea. The combination of a RT-PCR strategy with shotgun proteomics demonstrates that interrupted genes in the archaeon Sulfolobus solfataricus are expressed in vivo. In addition, the sequence of the peptides determined by LCMSMS and experiments of in vitro translation allows us to identify a gene expressed by programmed -1 frameshifting. Our findings will enable an accurate reinterpretation of archaeal interrupted genes shedding light on their function and on archaeal genome evolution.


Asunto(s)
Proteínas Arqueales/química , Genes Arqueales , Ensayos Analíticos de Alto Rendimiento/métodos , Proteoma/análisis , Proteómica/métodos , Sulfolobus solfataricus/genética , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Secuencia de Bases , Cromatografía Liquida , Datos de Secuencia Molecular , Mapeo Peptídico , Seudogenes , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem , Transcetolasa/química , Transcetolasa/genética
16.
Res Microbiol ; 160(7): 493-501, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19576983

RESUMEN

Initiation of protein synthesis, entailing ribosomal recognition of the mRNA start codon and setting of the correct reading frame, is the rate-limiting step in translation and the main target of translation regulation in all modern cells. As efficient selection of the translation start site is vital for survival of extant cells, a mechanism for ensuring this may already have been in existence in the last universal common ancestor of present-day cells. This article reviews known features of the molecular machinery for initiation in the primary domains of life, Bacteria, Archaea and Eukarya, and attempts to identify conserved features that may be useful for reconstructing a model of the ancestral initiation apparatus.


Asunto(s)
Archaea/fisiología , Fenómenos Fisiológicos Bacterianos , Eucariontes/fisiología , Evolución Molecular , Iniciación de la Cadena Peptídica Traduccional , Modelos Biológicos , Modelos Moleculares
17.
Nucleic Acids Res ; 37(1): 256-67, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19036786

RESUMEN

The translation factor IF6 is shared by the Archaea and the Eukarya, but is not found in Bacteria. The properties of eukaryal IF6 (eIF6) have been extensively studied, but remain somewhat elusive. eIF6 behaves as a ribosome-anti-association factor and is involved in miRNA-mediated gene silencing; however, it also seems to participate in ribosome synthesis and export. Here we have determined the function and ribosomal localization of the archaeal (Sulfolobus solfataricus) IF6 homologue (aIF6). We find that aIF6 binds specifically to the 50S ribosomal subunits, hindering the formation of 70S ribosomes and strongly inhibiting translation. aIF6 is uniformly expressed along the cell cycle, but it is upregulated following both cold- and heat shock. The aIF6 ribosomal binding site lies in the middle of the 30-S interacting surface of the 50S subunit, including a number of critical RNA and protein determinants involved in subunit association. The data suggest that the IF6 protein evolved in the archaeal-eukaryal lineage to modulate translational efficiency under unfavourable environmental conditions, perhaps acquiring additional functions during eukaryotic evolution.


Asunto(s)
Proteínas Arqueales/metabolismo , Factores Procarióticos de Iniciación/metabolismo , Biosíntesis de Proteínas , Subunidades Ribosómicas Grandes de Archaea/metabolismo , Sulfolobus solfataricus/genética , Proteínas Arqueales/análisis , Proteínas Arqueales/química , Secuencia de Bases , Sitios de Unión , Ciclo Celular , Clonación Molecular , Factores Eucarióticos de Iniciación/química , Modelos Moleculares , Datos de Secuencia Molecular , Factores Procarióticos de Iniciación/análisis , Factores Procarióticos de Iniciación/química , ARN Ribosómico 23S/química , ARN Ribosómico 23S/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Sulfolobus solfataricus/metabolismo
18.
Methods Enzymol ; 430: 79-109, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17913636

RESUMEN

Initiation is the step of translation that has incurred the greatest evolutionary divergence. In silico and experimental studies have shown that archaeal translation initiation resembles neither the bacterial nor the eukaryotic paradigm, but shares features with both. The structure of mRNA in archaea is similar to the bacterial one, although the protein factors that assist translational initiation are more numerous than in bacteria and are homologous to eukaryotic proteins. This chapter describes a number of techniques that can be used for in vitro studies of archaeal translation and translational initiation, using as a model system the thermophilic crenarcheon Sulfolobus solfataricus, growing optimally at about 80 degrees in an acidic environment.


Asunto(s)
Biosíntesis de Proteínas , Sulfolobus solfataricus , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sustancias Macromoleculares , Metionina/metabolismo , Factores de Iniciación de Péptidos/aislamiento & purificación , Factores de Iniciación de Péptidos/metabolismo , ARN de Archaea/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/aislamiento & purificación , ARN de Transferencia/metabolismo , ARN de Transferencia de Metionina/aislamiento & purificación , ARN de Transferencia de Metionina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo
19.
Mol Microbiol ; 65(3): 700-13, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17608795

RESUMEN

The protein IF2/eIF5B is one of the few translation initiation factors shared by all three primary domains of life (bacteria, archaea, eukarya). Despite its phylogenetic conservation, the factor is known to present marked functional divergences in the bacteria and the eukarya. In this work, the function in translation of the archaeal homologue (aIF2/5B) has been analysed in detail for the first time using a variety of in vitro assays. The results revealed that the protein is a ribosome-dependent GTPase which strongly stimulates the binding of initiator tRNA to the ribosomes even in the absence of other factors. In agreement with this finding, aIF2/5B enhances the translation of both leadered and leaderless mRNAs when expressed in a cell-free protein-synthesizing system. Moreover, the degree of functional conservation of the IF2-like factors in the archaeal and bacterial lineages was investigated by analysing the behaviour of 'chimeric' proteins produced by swapping domains between the Sulfolobus solfataricus aIF2/5B factor and the IF2 protein of the thermophilic bacterium Bacillus stearothermophilus. Beside evidencing similarities and differences between the archaeal and bacterial factors, these experiments have provided insight into the common role played by the IF2/5B proteins in all extant cells.


Asunto(s)
Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Sulfolobus solfataricus/metabolismo , Regiones no Traducidas 5'/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Secuencia Conservada , GTP Fosfohidrolasas/metabolismo , Expresión Génica , Genes Arqueales , Hidrólisis , Iniciación de la Cadena Peptídica Traduccional , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/aislamiento & purificación , Unión Proteica , Estructura Secundaria de Proteína , ARN de Transferencia de Metionina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Sulfolobus solfataricus/genética
20.
Nucleic Acids Res ; 34(15): 4258-68, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16920738

RESUMEN

The standard rules of genetic translational decoding are altered in specific genes by different events that are globally termed recoding. In Archaea recoding has been unequivocally determined so far only for termination codon readthrough events. We study here the mechanism of expression of a gene encoding for a alpha-l-fucosidase from the archaeon Sulfolobus solfataricus (fucA1), which is split in two open reading frames separated by a -1 frameshifting. The expression in Escherichia coli of the wild-type split gene led to the production by frameshifting of full-length polypeptides with an efficiency of 5%. Mutations in the regulatory site where the shift takes place demonstrate that the expression in vivo occurs in a programmed way. Further, we identify a full-length product of fucA1 in S.solfataricus extracts, which translate this gene in vitro by following programmed -1 frameshifting. This is the first experimental demonstration that this kind of recoding is present in Archaea.


Asunto(s)
Archaea/genética , Sistema de Lectura Ribosómico , Regulación de la Expresión Génica Arqueal/fisiología , alfa-L-Fucosidasa/genética , Escherichia coli/genética , Mutación del Sistema de Lectura , Sulfolobus solfataricus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA