Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Commun ; 13(1): 4432, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35908063

RESUMEN

The rise of CO2 in atmosphere is considered as the major reason for global warming. Therefore, CO2 utilization has attracted more and more attention. Among those, using CO2 as C1-feedstock for the chemical industry provides a solution. Here we show a two-step cascade process to perform catalytic carbonylations of olefins, alkynes, and aryl halides utilizing CO2 and H2. For the first step, a novel heterogeneous copper 10Cu@SiO2-PHM catalyst exhibits high selectivity (≥98%) and decent conversion (27%) in generating CO from reducing CO2 with H2. The generated CO is directly utilized without further purification in industrially important carbonylation reactions: hydroformylation, alkoxycarbonylation, and aminocarbonylation. Notably, various aldehydes, (unsaturated) esters and amides are obtained in high yields and chemo-/regio-selectivities at low temperature under ambient pressure. Our approach is of interest for continuous syntheses in drug discovery and organic synthesis to produce building blocks on reasonable scale utilizing CO2.

2.
Chemistry ; 28(27): e202200079, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35267226

RESUMEN

A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8 ] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4 )16 [(BiPMo11 O39 )4 ] ⋅ 22 H2 O; (P4 Bi4 Mo44 ) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo-K and the Bi-L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi-Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure.

3.
Environ Sci Technol ; 54(19): 11753-11761, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32790302

RESUMEN

The impact of formaldehyde (HCHO, formed in vehicle exhaust gases by incomplete combustion of fuel) on the performance of a commercial V2O5-WO3/TiO2 catalyst in NH3-SCR of NOx under dry conditions has been analyzed in detail by catalytic tests, in situ FTIR and transient studies using temporal analysis of products (TAP). HCHO reacts preferentially with NH3 to a formamide (HCONH2) surface intermediate. This deprives NH3 partly from its desired role as a reducing agent in the SCR and diminishes NO conversion and N2 selectivity. Between 250 and 400 °C, HCONH2 decomposes by dehydration (major pathway) and decarbonylation (minor pathway) to liberate toxic HCN and CO, respectively. HCN was proven to be oxidized by lattice oxygen of the catalyst to CO2 and NO, which enters the NH3-SCR reaction.


Asunto(s)
Amoníaco , Titanio , Catálisis , Formaldehído
4.
Chemistry ; 26(33): 7395-7404, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32118340

RESUMEN

Operando EPR, XANES/EXAFS, UV-Vis and ATR-IR spectroscopic methods have been coupled for the first time in the same experimental setup for investigation of unclear mechanistic aspects of selective aerobic oxidation of benzyl alcohol by a Cu/TEMPO catalytic system (TEMPO=2,2,6,6-tetramethylpiperidinyloxyl). By multivariate curve resolution with alternating least-squares fitting (MCR-ALS) of simultaneously recorded XAS and UV-Vis data sets, it was found that an initially formed (bpy)(NMI)CuI - complex (bpy=2,2'-bipyridine, NMI=N-methylimidazole ) is converted to two different CuII species, a mononuclear (bpy)(NMI)(CH3 CN)CuII -OOH species detectable by EPR and ESI-MS, and an EPR-silent dinuclear (CH3 CN)(bpy)(NMI)CuII (µ-OH)2 ⋅CuII (bpy)(NMI) complex. The latter is cleaved in the further course of reaction into (bpy)(NMI)(HOO)CuII -TEMPO monomers that are also EPR-silent due to dipolar interaction with bound TEMPO. Both Cu monomers and the Cu dimer are catalytically active in the initial phase of the reaction, yet the dimer is definitely not a major active species nor a resting state since it is irreversibly cleaved in the course of the reaction while catalytic activity is maintained. Gradual formation of non-reducible CuII leads to slight deactivation at extended reaction times.

5.
ChemSusChem ; 12(3): 651-660, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30451389

RESUMEN

Au/TiO2 and Au/SiO2 catalysts containing 2 wt % Au and different amounts of K or Cs were tested for alcohol synthesis from CO2 , H2 , and C2 H4 /C3 H6 . 1-Propanol or 1-butanol/isobutanol were obtained in the presence of C2 H4 or C3 H6 . Higher yields of the corresponding alcohols were obtained over TiO2 -based catalysts in comparison with their SiO2 -based counterparts. This is caused by an enhanced ability of the TiO2 -based catalysts for CO2 activation, as concluded from in situ fourier-transform infrared (FTIR) spectroscopy and temporal analysis of products (TAP) studies. The synthesized carbonate and formate species adsorbed on the support do not hamper CO2 conversion into CO and the hydroformylation reaction. The transformation of Auδ+ to active Au0 sites proceeds during an activation procedure. As reflected by CO adsorption and scanning transmission electron microscopy, the accessible Au0 sites are influenced by the amount of alkali dopants and the support. FTIR data and TAP tests reveal a very weak interaction of C2 H4 with the catalyst, suggesting its quick reaction with CO and H2 after activation on Au0 sites to form propanol and propane.

6.
Langmuir ; 34(8): 2663-2673, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29397744

RESUMEN

This work reports the synthesis of heterostructured copper-ceria and iron-ceria nanorods and the role of their morphology, redox, and acid properties in catalytic diesel soot combustion. Microscopy images show the presence of nanocrystalline CuO (9.5 ± 0.5 nm) and Fe2O3 (7.3 ± 0.5 nm) particles on the surface of CeO2 nanorods (diameter is 8.5 ± 2 nm and length within 16-89 nm). In addition to diffraction peaks of CuO and Fe2O3 nanocrystallites, X-ray diffraction (XRD) studies reveal doping of Cu2+ and Fe3+ ions into the fluorite lattice of CeO2, hence abundant oxygen vacancies in the Cu/CeO2 and Fe/CeO2 nanorods, as evidenced by Raman spectroscopy studies. XRD and Raman spectroscopy studies further show substantial perturbations in Cu/CeO2 rods, resulting in an improved reducibility of bulk cerium oxide and formation of abundant Lewis acid sites, as investigated by H2-temperature-programmed reduction and pyridine-adsorbed Fourier transform infrared studies, respectively. The Cu/CeO2 rods catalyze the soot oxidation reaction at the lowest temperatures under both tight contact (Cu/CeO2; T50 = 358 °C, temperature at which 50% soot conversion is achieved, followed by Fe/CeO2; T50 = 368 °C and CeO2; T50 = 433 °C) and loose contact conditions (Cu/CeO2; T50 = 419 °C and Fe/CeO2; T50 = 435 °C). A possible mechanism based on the synergetic effect of redox and acid properties of Cu/CeO2 nanorods was proposed: acid sites can activate soot particles to form reactive carbon species, which are oxidized by gaseous oxygen/lattice oxygen activated in the oxygen vacancies (redox sites) of ceria rods.

7.
Inorg Chem ; 56(1): 684-691, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-28001062

RESUMEN

Selective aerobic oxidation of benzyl alcohol to benzaldehyde by a (bpy)CuI(IM)/TEMPO catalyst (IM represents differently substituted imidazoles) has been studied by simultaneous operando electron paramagnetic resonance/UV-vis/attentuated total reflectance infrared spectroscopy in combination with cyclic voltammetry to explore the particular role of imidazole in terms of ligand and/or base as well as of its substitution pattern on the catalytic performance. For molar ratios of IM/Cu ≥ 2, a (bpy)CuI/II(IM)a(IM)b complex is formed, in which the Cu-N distances and/or angles for the two IM ligands a and b are different. The coordination of a second IM molecule boosts the oxidation of CuI to CuII and, thus, helps to activate O2 by electron transfer from CuI to O2. The rates of CuI oxidation and CuII reduction and, thus, the rates of benzaldehyde formation depend on R of the R-N moiety in the IM ligand. Oxidation is fastest for R = H and alkyl, while reduction is slowest for R = H. The CuI/CuII interplay leads to decreasing total benzaldehyde formation rates in the order R (I+ effect) > R (conjugated system) > R = H.

8.
Angew Chem Int Ed Engl ; 54(40): 11791-4, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26174141

RESUMEN

The first coupled operando EPR/UV-Vis/ATR-IR spectroscopy setup for mechanistic studies of gas-liquid phase reactions is presented and exemplarily applied to the well-known copper/TEMPO-catalyzed (TEMPO=(2,2,6,6-tetramethylpiperidin-1-yl)oxyl) oxidation of benzyl alcohol. In contrast to previous proposals, no direct redox reaction between TEMPO and Cu(I) /Cu(II) has been detected. Instead, the role of TEMPO is postulated to be the stabilization of a (bpy)(NMI)Cu(II) -O2 (⋅-) -TEMPO (bpy=2,2'-bipyridine, NMI=N-methylimidazole) intermediate formed by electron transfer from Cu(I) to molecular O2 .

9.
Chem Commun (Camb) ; 51(15): 3065-8, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25597454

RESUMEN

Irradiation of a substituted ansa-titanocene(IV) dihydroxido complex with visible light induces Ti-O bond dissociation. In contrast to previous studies on structurally similar unbridged complexes, no side reactions are observed and formation of the Ti(III) species is highly selective. The formation of OH radicals was proved using a biradicaloid species.

10.
ChemSusChem ; 8(2): 323-30, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25346450

RESUMEN

Alkane dehydrogenation is of special interest for basic science but also offers interesting opportunities for industry. The existing dehydrogenation methodologies make use of heterogeneous catalysts, which suffer from harsh reaction conditions and a lack of selectivity, whereas homogeneous methodologies rely mostly on unsolicited waste generation from hydrogen acceptors. Conversely, acceptorless photochemical alkane dehydrogenation in the presence of trans-Rh(PMe3 )2 (CO)Cl can be regarded as a more benign and atom efficient alternative. However, this methodology suffers from catalyst deactivation over time. Herein, we provide a detailed investigation of the trans-Rh(PMe3 )2 (CO)Cl-photocatalyzed alkane dehydrogenation using spectroscopic and theoretical investigations. These studies inspired us to utilize CO2 to prevent catalyst deactivation, which leads eventually to improved catalyst turnover numbers in the dehydrogenation of alkanes that include liquid organic hydrogen carriers.


Asunto(s)
Alcanos/química , Dióxido de Carbono/química , Procesos Fotoquímicos , Catálisis , Hidrogenación , Modelos Moleculares , Conformación Molecular
11.
Chemistry ; 20(42): 13589-602, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25196789

RESUMEN

The iron-catalyzed dehydrogenation of formic acid has been studied both experimentally and mechanistically. The most active catalysts were generated in situ from cationic Fe(II) /Fe(III) precursors and tris[2-(diphenylphosphino)ethyl]phosphine (1, PP3 ). In contrast to most known noble-metal catalysts used for this transformation, no additional base was necessary. The activity of the iron catalyst depended highly on the solvent used, the presence of halide ions, the water content, and the ligand-to-metal ratio. The optimal catalytic performance was achieved by using [FeH(PP3 )]BF4 /PP3 in propylene carbonate in the presence of traces of water. With the exception of fluoride, the presence of halide ions in solution inhibited the catalytic activity. IR, Raman, UV/Vis, and EXAFS/XANES analyses gave detailed insights into the mechanism of hydrogen generation from formic acid at low temperature, supported by DFT calculations. In situ transmission FTIR measurements revealed the formation of an active iron formate species by the band observed at 1543 cm(-1) , which could be correlated with the evolution of gas. This active species was deactivated in the presence of chloride ions due to the formation of a chloro species (UV/Vis, Raman, IR, and XAS). In addition, XAS measurements demonstrated the importance of the solvent for the coordination of the PP3 ligand.

12.
ChemSusChem ; 7(9): 2631-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25044696

RESUMEN

Multifunctional catalysts are developed for converting CO2 with C2H4 and H2 into propanol. Au nanoparticles (NP) supported on TiO2 are found to facilitate this reaction. The activity and selectivity strongly depend on NP size, which can be tuned by the method of Au deposition and by promoting with K. The promoter improves the selectivity to propanol. Under optimized reaction conditions (2 MPa, 473 K, and CO2/H2/C2H4=1:1:1), CO2 is continuously converted into propanol with a near-to-100% selectivity. Catalytic tests as well as mechanistic studies by in situ FTIR and temporal analysis of products with isotopic tracers allow the overall reaction scheme to be determined. Propanol is formed through a sequence of reactions starting with reverse water-gas shift to reduce CO2 to CO, which is further consumed in the hydroformylation of ethylene to propanal. The latter is finally hydrogenated to propanol, while propanol hydrogenation to propane is suppressed.


Asunto(s)
1-Propanol/química , Dióxido de Carbono/química , Etilenos/química , Hidrógeno/química , Adsorción , Oro/química , Nanopartículas del Metal/química , Potasio/química , Especificidad por Sustrato , Temperatura , Titanio/química
13.
ChemSusChem ; 7(4): 1133-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24616303

RESUMEN

Carbon dioxide can be used in various ways as a cheap C1 source. However, the utilization of CO2 requires energy or energy-rich reagents, which leads to further emissions, and therefore, diminishes the CO2-saving potential. Therefore, life cycle assessment (LCA) is required for each process that uses CO2 to provide valid data for CO2 savings. Carbon dioxide can be incorporated into epoxidized fatty acid esters to provide the corresponding carbonates. A robust catalytic process was developed based on simple halide salts in combination with a phase-transfer catalyst. The CO2-saving potential was determined by comparing the carbonates as a plasticizer with an established phthalate-based plasticizer. Although CO2 savings of up to 80 % were achieved, most of the savings arose from indirect effects and not from CO2 utilization. Furthermore, other categories have been analyzed in the LCA. The use of biobased material has a variety of impacts on categories such as eutrophication and marine toxicity. Therefore, the benefits of biobased materials have to be evaluated carefully for each case. Finally, interesting properties as plasticizers were obtained with the carbonates. The volatility and water extraction could be improved relative to the epoxidized system.


Asunto(s)
Dióxido de Carbono/química , Carbonatos/química , Ácidos Grasos/química , Ácidos Grasos/síntesis química , Catálisis , Técnicas de Química Sintética , Ésteres
14.
Chemistry ; 19(41): 13705-13, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24092542

RESUMEN

A detailed mechanism of hydrogen production by reduction of water with decamethyltitanocene triflate [Cp*2 Ti(III) (OTf)] has been derived for the first time, based on a comprehensive in situ spectroscopic study including EPR and ATR-FTIR spectroscopy supported by DFT calculations. It is demonstrated that two H2 O molecules coordinate to [Cp*2 Ti(III) (OTf)] subsequently forming [Cp2 *Ti(III) (H2 O)(OTf)] and [Cp*Ti(III) (H2 O)2 (OTf)]. Triflate stabilizes the water ligands by hydrogen bonding. Liberation of hydrogen proceeds only from the diaqua complex [Cp*Ti(III) (H2 O)2 (OTf)] and involves, most probably, abstraction and recombination of two H atoms from two molecules of [Cp*Ti(III) (H2 O)2 (OTf)] in close vicinity, which is driven by the formation of a strong covalent TiOH bond in the resulting final product [Cp*2 Ti(IV) (OTf)(OH)].

15.
Angew Chem Int Ed Engl ; 52(44): 11577-80, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24014044

RESUMEN

Not a 'B'ore! Benzothiophene-based boronic acids catalyze the reduction of tertiary, secondary, and primary amides in the presence of a hydrosilane. The reaction demonstrates good functional-group tolerance.


Asunto(s)
Amidas/química , Aminas/química , Ácidos Borónicos/química , Catálisis , Estructura Molecular
16.
Artículo en Inglés | MEDLINE | ID: mdl-22613119

RESUMEN

Six selected benzylidene aniline-type prochiral imines were characterised by means of ATR-IR, UV-vis and Raman spectroscopy. A detailed UV-vis spectroscopic study supported by data obtained from single crystal X-ray analysis reveals the influence of the conformation of the imine on the electronic state. Additionally, the electronic effects of the substituents located in 4,4'-position on the shape of the UV-vis spectra were discussed. The influence of the substituents on the vibrational state of the CN double bond has been studied by ATR-IR spectroscopy using solid and dissolved samples. Finally, solvatochromatism and solvent-introduced tautomerism have been investigated by UV-vis and Raman spectroscopy. The effect of inter- and intramolecular hydrogen bond formation was demonstrated by changes of characteristic bands in the spectra.


Asunto(s)
Compuestos de Anilina/química , Benceno/química , Iminas/química , Cristalografía por Rayos X , Conformación Molecular , Solventes/química , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta , Espectrometría Raman , Estereoisomerismo
17.
Phys Chem Chem Phys ; 14(7): 2183-91, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22090021

RESUMEN

The simultaneous combination of steady state isotopic transient kinetic analysis (SSITKA) with diffuse reflectance Fourier transform spectroscopy (DRIFTS) and mass spectrometric (MS) analysis was applied to study the oxidative carbonylation of methanol (MeOH) to dimethyl carbonate (DMC) on a CuY zeolite catalyst prepared by incipient-wetness impregnation of commercial zeolite NH(4)-Y. The interaction of the catalyst with different reactants and reactant mixtures (O(2), CO, CO/O(2), MeOH/O(2), MeOH/CO, and MeOH/CO/O(2)) was studied in detail using (16)O(2)/(18)O(2) as well as (12)CO/(13)CO containing gas mixtures. DMC is produced via a monodentate monomethyl carbonate (MMC) species as intermediate which is formed by the concerted action of adsorbed methoxide and CO with gas phase MeOH. Adsorbed bidentate MMC species were found to be inactive. Lattice oxygen supplied by CuO(x) species is involved in the formation of MMC. Gas phase oxygen is needed to re-oxidize the catalyst but favours also the oxidation of CO to CO(2) and unselective oxidation reactions of MeOH to methyl formate, dimethoxymethane, and CO(2). The appropriate choice of reaction temperature and of the oxygen content in the reactant gas mixture was found to be indispensable for reaching high DMC selectivities.


Asunto(s)
Formiatos/química , Metanol/química , Zeolitas/química , Dióxido de Carbono/química , Isótopos de Carbono/química , Catálisis , Gases/química , Espectrometría de Masas , Oxidación-Reducción , Isótopos de Oxígeno/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
19.
Chem Soc Rev ; 39(12): 4718-30, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20959916

RESUMEN

Several in situ techniques are known which allow investigations of catalysts and catalytic reactions under real reaction conditions using different spectroscopic and X-ray methods. In recent years, specific set-ups have been established which combine two or more in situ methods in order to get a more detailed understanding of catalytic systems. This tutorial review will give a summary of currently available set-ups equipped with multiple techniques for in situ catalyst characterization, catalyst preparation, and reaction monitoring. Besides experimental and technical aspects of method coupling including X-ray techniques, spectroscopic methods (Raman, UV-vis, FTIR), and magnetic resonance spectroscopies (NMR, EPR), essential results will be presented to demonstrate the added value of multitechnique in situ approaches. A special section is focussed on selected examples of use which show new developments and application fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA