Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39253489

RESUMEN

Background: Autosomal dominant polycystic kidney disease (ADPKD) is primarily of adult-onset and caused by pathogenic variants in PKD1 or PKD2 . Yet, disease expression is highly variable and includes very early-onset PKD presentations in utero or infancy. In animal models, the RNA-binding molecule Bicc1 has been shown to play a crucial role in the pathogenesis of PKD. Methods: To study the interaction between BICC1, PKD1 and PKD2 we combined biochemical approaches, knockout studies in mice and Xenopus, genetic engineered human kidney cells as well as genetic association studies in a large ADPKD cohort. Results: We first demonstrated that BICC1 physically binds to the proteins Polycystin-1 and -2 encoded by PKD1 and PKD2 via distinct protein domains. Furthermore, PKD was aggravated in loss-of-function studies in Xenopus and mouse models resulting in more severe disease when Bicc1 was depleted in conjunction with Pkd1 or Pkd2 . Finally, in a large human patient cohort, we identified a sibling pair with a homozygous BICC1 variant and patients with very early onset PKD (VEO-PKD) that exhibited compound heterozygosity of BICC1 in conjunction with PKD1 and PKD2 variants. Genome editing demonstrated that these BICC1 variants were hypomorphic in nature and impacted disease-relevant signaling pathways. Conclusions: These findings support the hypothesis that BICC1 cooperates functionally with PKD1 and PKD2 , and that BICC1 variants may aggravate disease severity highlighting RNA metabolism as an important new concept for disease modification in ADPKD.

2.
Kidney Int Rep ; 9(8): 2484-2497, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39156152

RESUMEN

Introduction: Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney disease in children. Although only 20% of cases can be genetically explained, the majority remain without an identified underlying etiology. The neurodevelopmental disorder Chung-Jansen syndrome (CHUJANS) is caused by haploinsufficiency of Pleckstrin homology domain-interacting protein (PHIP) and was previously associated with genital malformations. Anecdotal coincidence of CHUJANS and CAKUT prompted us to investigate whether urorenal malformations are part of the phenotypic spectrum of CHUJANS. Methods: Analysis of existing CHUJANS and CAKUT cohorts, consulting matchmaking platforms, and systematic literature review to look for additional patients with both CHUJANS and CAKUT. Prenatal expression studies in murine and human renal tissues to investigate the role for PHIP in kidney development. Results: We identified 4 novel and 8 published cases, indicating variable expressivity with a urorenogenital trait frequency of 5% to 35%. The prenatal expression studies supported a role for PHIP in normal kidney and urinary tract development. Conclusion: Pathogenic PHIP gene variants should be considered as causative in patients with syndromal CAKUT. Conversely, patients with CHUJANS should be clinically evaluated for urorenogenital manifestations. Because neurodevelopmental disorders are often associated with kidney phenotypes, an interdisciplinary re-evaluation offers promise in identifying incompletely penetrant kidney associations and uncovering novel molecular mechanisms of disturbed nephrogenesis.

3.
Kidney Int Rep ; 9(8): 2514-2526, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39156164

RESUMEN

Introduction: Hepatocyte nuclear factor 1-beta (HNF1B) gene variants or the chromosome 17q12 deletion (17q12del) represent the most common monogenic cause of developmental kidney disease. Although neurodevelopmental disorders have been associated with the 17q12del, specific genotype-phenotype associations with respect to kidney function evolution have not yet been fully defined. Here, we aimed to determine whether 17q12del or specific HNF1B variants were associated with kidney survival in a large patient population with HNF1B disease. Methods: This was a retrospective observational study involving 521 patients with HNF1B disease from 14 countries using the European Reference Network for rare kidney diseases with detailed information on the HNF1B genotype (HNF1B variants or the 17q12del). Median follow-up time was 11 years with 6 visits per patient. The primary end point was progression to chronic kidney disease (CKD) stage 3 (estimated glomerular filtration rate [eGFR] < 60 ml/min per 1.73 m2). Secondary end points were the development of hypomagnesemia or extrarenal disorders, including hyperuricemia and hyperglycemia. Results: Progression toward CKD stage 3 was significantly delayed in patients with the 17q12del compared to patients with HNF1B variants (hazard ratio [HR]: 0.29, 95% confidence interval [CI]: 0.19-0.44, P < 0.001). Progression toward CKD stage 3 was also significantly delayed when HNF1B variants involved the HNF1B Pit-1, Oct-1, and Unc-86 homeodomain (POUh) DNA-binding and transactivation domains rather than the POU-specific domain (POUs) DNA-binding domain (HR: 0.15 [95% CI: 0.06-0.37), P < 0.001 and HR: 0.25 (95% CI: 0.11-0.57), P = 0.001, respectively). Finally, the 17q12del was positively associated with hypomagnesemia and negatively associated with hyperuricemia, but not with hyperglycemia. Conclusion: Patients with the 17q12del display a significantly better kidney survival than patients with other HNF1B variants; and for the latter, variants in the POUs DNA-binding domain lead to the poorest kidney survival. These are clinically relevant HNF1B kidney genotype-phenotype correlations that inform genetic counseling.

5.
Eur J Hum Genet ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085583

RESUMEN

Four European Reference Networks (ERN-EYE, ERKNet, Endo-ERN, ERN-ITHACA) have teamed up to establish a consensus statement and recommendations for Bardet-Biedl syndrome (BBS). BBS is an autosomal recessive ciliopathy with at least 26 genes identified to date. The clinical manifestations are pleiotropic, can be observed in utero and will progress with age. Genetic testing has progressively improved in the last years prompting for a revision of the diagnostic criteria taking into account clinical Primary and Secondary features, as well as positive or negative molecular diagnosis. This consensus statement also emphasizes on initial diagnosis, monitoring and lifelong follow-up, and symptomatic care that can be provided to patients and family members according to the involved care professionals. For paediatricians, developmental anomalies can be at the forefront for diagnosis (such as polydactyly) but can require specific care, such as for associated neuro developmental disorders. For ophthalmology, the early onset retinal degeneration requires ad hoc functional and imaging technologies and specific care for severe visual impairment. For endocrinology, among other manifestations, early onset obesity and its complications has benefited from better evaluation of eating behaviour problems, improved lifestyle programs, and from novel pharmacological therapies. Kidney and urinary track involvements warrants lifespan attention, as chronic kidney failure can occur and early management might improve outcome. This consensus recommends revised diagnostic criteria for BBS that will ensure certainty of diagnosis, giving robust grounds for genetic counselling as well as in the perspective of future trials for innovative therapies.

6.
Kidney Int Rep ; 9(4): 919-928, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38765599

RESUMEN

Introduction: In pregnancy-related atypical hemolytic uremic syndrome (p-aHUS), transferring recommendations for treatment decisions from nonpregnant cohorts with thrombotic microangiopathy (TMA) is difficult. Although potential causes of p-aHUS may be unrelated to inherent complement defects, peripartal complications such as postpartum hemorrhage (PPH) or (pre)eclampsia or Hemolysis, Elevated Liver enzymes and Low Platelets (HELLP) syndrome may be unrecognized drivers of complement activation. Methods: To evaluate diagnostic and therapeutic decisions in the practical real-life setting, we conducted an analysis of a cohort of 40 patients from 3 German academic hospitals with a diagnosis of p-aHUS, stratified by the presence (n = 25) or absence (n = 15) of PPH. Results: Histological signs of TMA were observed in 84.2% of all patients (100% vs. 72.7% in patients without or with PPH, respectively). Patients without PPH had a higher likelihood (20% vs. 0%) of pathogenic genetic abnormalities in the complement system although notably less than in other published cohorts. Four of 5 patients with observed renal cortical necrosis (RCN) after PPH received complement inhibition and experienced partially recovered kidney function. Patients on complement inhibition with or without PPH had an increased need for kidney replacement therapy (KRT) and plasma exchange (PEX). Because renal recovery was comparable among all patients treated with complement inhibition, a potential beneficial effect in this group of pregnancy-associated TMAs and p-aHUS is presumed. Conclusion: Based on our findings, we suggest a pragmatic approach toward limited and short-term anticomplement therapy for patients with a clinical diagnosis of p-aHUS, which should be stopped once causes of TMA other than genetic complement abnormalities emerge.

7.
Nat Rev Nephrol ; 20(6): 402-420, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38443710

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by the presence of proliferative lesions throughout the body. Management of TSC is challenging because patients have a multifaceted systemic illness with prominent neurological and developmental impact as well as potentially severe kidney, heart and lung phenotypes; however, every organ system can be involved. Adequate care for patients with TSC requires a coordinated effort involving a multidisciplinary team of clinicians and support staff. This clinical practice recommendation was developed by nephrologists, urologists, paediatric radiologists, interventional radiologists, geneticists, pathologists, and patient and family group representatives, with a focus on TSC-associated kidney manifestations. Careful monitoring of kidney function and assessment of kidney structural lesions by imaging enable early interventions that can preserve kidney function through targeted approaches. Here, we summarize the current evidence and present recommendations for the multidisciplinary management of kidney involvement in TSC.


Asunto(s)
Esclerosis Tuberosa , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/terapia , Esclerosis Tuberosa/complicaciones , Humanos , Consenso , Angiomiolipoma/genética , Angiomiolipoma/etiología , Guías de Práctica Clínica como Asunto
8.
Klin Padiatr ; 236(5): 269-279, 2024 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-38458231

RESUMEN

Bardet-Biedl syndrome (BBS) is a rare, autosomal recessive multisystem disease. The pathophysiological origin is a dysfunction of the primary cilium. Clinical symptoms are heterogeneous and variable: retinal dystrophy, obesity, polydactyly, kidney abnormalities, hypogenitalism and developmental delays are the most common features. By the approval of the melanocortin 4 receptor agonist setmelanotide, a drug therapy for BBS-associated hyperphagia and obesity can be offered for the first time. Hyperphagia and severe obesity represent a considerable burden and are associated with comorbidity and increased mortality risk. Due to the limited experience with setmelanotide in BBS, a viable comprehensive therapy concept is to be presented. Therapy decision and management should be conducted in expert centers. For best therapeutic effects with setmelanotide adequate information of the patient about the modalities of the therapy (daily subcutaneous injection) and possible adverse drug events are necessary. Furthermore, the involvement of psychologists, nutritionists and nursing services (support for the application) should be considered together with the patient. The assessment of therapy response should be carried out with suitable outcome measurements and centrally reported to an adequate register.


Asunto(s)
Síndrome de Bardet-Biedl , Hiperfagia , Síndrome de Bardet-Biedl/terapia , Síndrome de Bardet-Biedl/diagnóstico , Humanos , Hiperfagia/terapia , Hiperfagia/diagnóstico , Hiperfagia/etiología , Niño , Adolescente , Receptor de Melanocortina Tipo 4/genética , Terapia Combinada , Colaboración Intersectorial , Comunicación Interdisciplinaria , Obesidad Mórbida/complicaciones
9.
Kidney Blood Press Res ; 49(1): 239-244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38513628

RESUMEN

INTRODUCTION: This study was designed to determine the mineral composition of calculi in nephrocalcinosis with nephrolithiasis, diagnose the underlying disease, and monitor the course of renal function in patients with nephrocalcinosis-nephrolithiasis. METHODS: Renal calculi extruded in a series of 8 patients with nephrocalcinosis were analysed using Fourier transmission infrared spectrometry. In 4 patients, next-generation sequencing using a nephrocalcinosis-nephrolithiasis panel was performed to determine the nature of the underlying disease. In addition, longitudinal analysis of renal function was performed in all patients. RESULTS: Seven patients revealed carbonate apatite as the sole constituent of renal calculi. One patient showed a mixed composition of dicalcium phosphate dihydrate/carbonate apatite at first analysis yet in subsequent episodes also had calculi composed of pure carbonate apatite. Further molecular analysis displayed distal renal tubular acidosis in 2 of 4 patients who consented to sequencing. No known genetic defect could be found in the other two cases. In line with prior reports, decline of renal function was dependent on underlying disease. Distal renal tubular acidosis revealed a progressive course of renal failure, whereas other causes showed stable renal function in long term analysis. CONCLUSION: Nephrocalcinosis with nephrolithiasis is a rare condition with heterogeneous aetiology. Yet mineral composition of renal calculi predominantly consisted of pure carbonate apatite. This uniform finding is similar to subcutaneous calcifications of various origins and might propose a general principle of tissue calcification. Progressive decline of renal function was found in distal renal tubular acidosis, whereas other conditions remained stable over time.


Asunto(s)
Apatitas , Nefrocalcinosis , Nefrolitiasis , Humanos , Apatitas/análisis , Nefrocalcinosis/etiología , Masculino , Nefrolitiasis/etiología , Femenino , Adulto , Persona de Mediana Edad , Acidosis Tubular Renal
11.
Int J Mol Sci ; 25(2)2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279270

RESUMEN

The BiP co-chaperone DNAJC3 protects cells during ER stress. In mice, the deficiency of DNAJC3 leads to beta-cell apoptosis and the gradual onset of hyperglycemia. In humans, biallelic DNAJC3 variants cause a multisystem disease, including early-onset diabetes mellitus. Recently, hyperinsulinemic hypoglycemia (HH) has been recognized as part of this syndrome. This report presents a case study of an individual with HH caused by DNAJC3 variants and provides an overview of the metabolic phenotype of individuals with HH and DNAJC3 variants. The study demonstrates that HH may be a primary symptom of DNAJC3 deficiency and can persist until adolescence. Additionally, glycemia and insulin release were analyzed in young DNACJ3 knockout (K.O.) mice, which are equivalent to human infants. In the youngest experimentally accessible age group of 4-week-old mice, the in vivo glycemic phenotype was already dominated by a reduced total insulin secretion capacity. However, on a cellular level, the degree of insulin release of DNAJC3 K.O. islets was higher during periods of increased synthetic activity (high-glucose stimulation). We propose that calcium leakage from the ER into the cytosol, due to disrupted DNAJC3-controlled gating of the Sec61 channel, is the most likely mechanism for HH. This is the first genetic mechanism explaining HH solely by the disruption of intracellular calcium homeostasis. Clinicians should screen for HH in DNAJC3 deficiency and consider DNAJC3 variants in the differential diagnosis of congenital hyperinsulinism.


Asunto(s)
Hiperinsulinismo Congénito , Proteínas del Choque Térmico HSP40 , Adolescente , Animales , Humanos , Ratones , Calcio/metabolismo , Hiperinsulinismo Congénito/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Insulina/metabolismo , Secreción de Insulina , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
12.
Gastroenterology ; 166(5): 902-914, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101549

RESUMEN

BACKGROUND & AIMS: Autosomal dominant polycystic liver disease is a rare condition with a female preponderance, based mainly on pathogenic variants in 2 genes, PRKCSH and SEC63. Clinically, autosomal dominant polycystic liver disease is characterized by vast heterogeneity, ranging from asymptomatic to highly symptomatic hepatomegaly. To date, little is known about the prediction of disease progression at early stages, hindering clinical management, genetic counseling, and the design of randomized controlled trials. To improve disease prognostication, we built a consortium of European and US centers to recruit the largest cohort of patients with PRKCSH and SEC63 liver disease. METHODS: We analyzed an international multicenter cohort of 265 patients with autosomal dominant polycystic liver disease harboring pathogenic variants in PRKCSH or SEC63 for genotype-phenotype correlations, including normalized age-adjusted total liver volumes and polycystic liver disease-related hospitalization (liver event) as primary clinical end points. RESULTS: Classifying individual total liver volumes into predefined progression groups yielded predictive risk discrimination for future liver events independent of sex and underlying genetic defects. In addition, disease severity, defined by age at first liver event, was considerably more pronounced in female patients and patients with PRKCSH variants than in those with SEC63 variants. A newly developed sex-gene score was effective in distinguishing mild, moderate, and severe disease, in addition to imaging-based prognostication. CONCLUSIONS: Both imaging and clinical genetic scoring have the potential to inform patients about the risk of developing symptomatic disease throughout their lives. The combination of female sex, germline PRKCSH alteration, and rapid total liver volume progression is associated with the greatest odds of polycystic liver disease-related hospitalization.


Asunto(s)
Hospitalización , Hepatopatías , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Unión al Calcio , Quistes/genética , Quistes/diagnóstico por imagen , Quistes/patología , Progresión de la Enfermedad , Europa (Continente) , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Glucosidasas/genética , Hepatomegalia/genética , Hepatomegalia/diagnóstico por imagen , Hospitalización/estadística & datos numéricos , Hígado/patología , Hígado/diagnóstico por imagen , Hepatopatías/genética , Hepatopatías/patología , Hepatopatías/diagnóstico por imagen , Chaperonas Moleculares , Tamaño de los Órganos , Pronóstico , Medición de Riesgo , Factores de Riesgo , Proteínas de Unión al ARN , Índice de Severidad de la Enfermedad , Factores Sexuales , Estados Unidos/epidemiología
13.
Kidney Int ; 105(4): 844-864, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38154558

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.


Asunto(s)
Estructuras Embrionarias , Factores de Transcripción Forkhead , Enfermedades Renales , Riñón , Nefronas , Sistema Urinario , Anomalías Urogenitales , Reflujo Vesicoureteral , Adulto , Animales , Humanos , Ratones , Estudio de Asociación del Genoma Completo , Riñón/anomalías , Riñón/embriología , Enfermedades Renales/genética , Ratones Noqueados , Nefronas/embriología , Factores de Transcripción/genética , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/metabolismo
14.
Orphanet J Rare Dis ; 18(1): 360, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974153

RESUMEN

BACKGROUND: Hypoketotic hypoglycaemia with suppressed plasma fatty acids and detectable insulin suggests congenital hyperinsulinism (CHI). Severe hypoketotic hypoglycaemia mimicking hyperinsulinism but without detectable insulin has recently been described in syndromic individuals with mosaic genetic activation of post-receptor insulin signalling. We set out to expand understanding of this entity focusing on metabolic phenotypes. METHODS: Metabolic profiling, candidate gene and exome sequencing were performed in six infants with hypoketotic, hypoinsulinaemic hypoglycaemia, with or without syndromic features. Additional signalling studies were carried out in dermal fibroblasts from two individuals. RESULTS: Two infants had no syndromic features. One was mistakenly diagnosed with CHI. One had mild features of megalencephaly-capillary malformation-polymicrogyria (MCAP) syndrome, one had non-specific macrosomia, and two had complex syndromes. All required intensive treatment to maintain euglycaemia, with CHI-directed therapies being ineffective. Pathogenic PIK3CA variants were found in two individuals - de novo germline c.323G>A (p.Arg108His) in one non-syndromic infant and postzygotic mosaic c.2740G>A (p.Gly914Arg) in the infant with MCAP. No causal variants were proven in the other individuals despite extensive investigation, although rare variants in mTORC components were identified in one. No increased PI3K signalling in fibroblasts of two individuals was seen. CONCLUSIONS: We expand the spectrum of PI3K-related hypoinsulinaemic hypoketotic hypoglycaemia. We demonstrate that pathogenic germline variants activating post-insulin-receptor signalling may cause non-syndromic hypoinsulinaemic hypoketotic hypoglycaemia closely resembling CHI. This distinct biochemical footprint should be sought and differentiated from CHI in infantile hypoglycaemia. To facilitate adoption of this differential diagnosis, we propose the term "pseudohyperinsulinism".


Asunto(s)
Hiperinsulinismo Congénito , Proteínas Proto-Oncogénicas c-akt , Lactante , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Insulina , Hiperinsulinismo Congénito/genética , Fosfatidilinositol 3-Quinasas/metabolismo
15.
Pediatrics ; 152(6)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38018238

RESUMEN

We report the case of a male patient who had a history of early-onset protein-losing enteropathy, chronic diarrhea, and repeated thrombotic events since early childhood. He developed Budd-Chiari syndrome with consequent acute liver failure that required liver transplantation when he was 12 years old. The initial graft failed to function and he required retransplantation. Steroid-resistant rejection complicated the clinical course after the second transplant. Treatment with antithymocyte globulin stabilized graft function but abdominal symptoms and enteral protein loss persisted. The patient remained dependent on intravenous albumin and immunoglobulin. Extended work-up for thrombophilia was unremarkable. Flow cytometry analysis of the peripheral blood cells revealed an unexplained CD55 deficiency. By sequencing of CD55 and, later, exclusion of alternative rare diseases by whole-exome sequencing, we discovered a novel, likely pathogenic homozygous splice-site variant in CD55 c.578 + 5G>A, NM_000574.4, OMIM 125240. The staining of liver and colon biopsies revealed a lack of CD55 protein expression. After initiation of treatment with eculizumab, the patient achieved and has maintained a complete clinical remission throughout 56 months of follow-up. We recommend testing for CD55 deficiency in patients with protein-losing enteropathy. In addition, CD55 deficiency should be considered in the differential diagnosis of patients with Budd-Chiari syndrome in whom an underlying cause is uncertain.


Asunto(s)
Síndrome de Budd-Chiari , Trasplante de Hígado , Enteropatías Perdedoras de Proteínas , Niño , Humanos , Masculino , Anticuerpos Monoclonales Humanizados/uso terapéutico , Síndrome de Budd-Chiari/complicaciones , Síndrome de Budd-Chiari/tratamiento farmacológico , Síndrome de Budd-Chiari/cirugía , Enteropatías Perdedoras de Proteínas/complicaciones
16.
Sci Rep ; 13(1): 19161, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932480

RESUMEN

The renal glomerulus represents the major filtration body of the vertebrate nephron and is responsible for urine production and a number of other functions such as metabolic waste elimination and the regulation of water, electrolyte and acid-base balance. Podocytes are highly specialized epithelial cells that form a crucial part of the glomerular filtration barrier (GFB) by establishing a slit diaphragm for semipermeable plasma ultrafiltration. Defects of the GFB lead to proteinuria and impaired kidney function often resulting in end-stage renal failure. Although significant knowledge has been acquired in recent years, many aspects in podocyte biology are still incompletely understood. By using zebrafish as a vertebrate in vivo model, we report a novel role of the Kinesin-like motor protein Kif21a in glomerular filtration. Our studies demonstrate specific Kif21a localization to the podocytes. Its deficiency resulted in altered podocyte morphology leading to podocyte foot process effacement and altered slit diaphragm formation. Finally, we proved considerable functional consequences of Kif21a deficiency by demonstrating a leaky GFB resulting in severe proteinuria. Conclusively, our data identified a novel role of Kif21a for proper GFB function and adds another piece to the understanding of podocyte architecture and regulation.


Asunto(s)
Barrera de Filtración Glomerular , Cinesinas , Podocitos , Animales , Barrera de Filtración Glomerular/fisiopatología , Glomérulos Renales/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo , Pez Cebra , Cinesinas/genética , Proteínas de Pez Cebra/genética
17.
Sci Rep ; 13(1): 17647, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848494

RESUMEN

CLIC5 belongs to a family of ion channels with six members reported so far. In vertebrates, the CLIC5 gene encodes two different isoforms, CLIC5A and CLIC5B. In addition to its ion channel activity, there is evidence for further functions of CLIC5A, such as the remodeling of the actin cytoskeleton during the formation of a functional glomerulus in the vertebrate kidney. However, its specific role is still incompletely understood and a specific functional role for CLIC5B has not been described yet. Here we report our findings on the differential expression and functions of Clic5a and Clic5b during zebrafish kidney development. Whole-mount in situ hybridization studies revealed specific expression of clic5a in the eye and pronephric glomerulus, and clic5b is expressed in the gut, liver and the pronephric tubules. Clic5 immunostainings revealed that Clic5b is localized in the cilia. Whereas knockdown of Clic5a resulted in leakiness of the glomerular filtration barrier, Clic5b deficient embryos displayed defective ciliogenesis, leading to ciliopathy-associated phenotypes such as ventral body curvature, otolith deposition defects, altered left-right asymmetry and formation of hydrocephalus and pronephric cysts. In addition, Clic5 deficiency resulted in dysregulation of cilia-dependent Wnt signalling pathway components. Mechanistically, we identified a Clic5-dependent activation of the membrane-cytoskeletal linker proteins Ezrin/Radixin/Moesin (ERM) in the pronephric tubules of zebrafish. In conclusion, our in vivo data demonstrates a novel role for Clic5 in regulating essential ciliary functions and identified Clic5 as a positive regulator of ERM phosphorylation.


Asunto(s)
Canales de Cloruro , Cloruros , Cilios , Glomérulos Renales , Proteínas de Microfilamentos , Pez Cebra , Animales , Citoesqueleto de Actina/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Cilios/genética , Cilios/metabolismo , Glomérulos Renales/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
18.
Cell Mol Life Sci ; 80(11): 333, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37878054

RESUMEN

The conserved multiple PDZ-domain containing protein PATJ stabilizes the Crumbs-Pals1 complex to regulate apical-basal polarity and tight junction formation in epithelial cells. However, the molecular mechanism of PATJ's function in these processes is still unclear. In this study, we demonstrate that knockout of PATJ in epithelial cells results in tight junction defects as well as in a disturbed apical-basal polarity and impaired lumen formation in three-dimensional cyst assays. Mechanistically, we found PATJ to associate with and inhibit histone deacetylase 7 (HDAC7). Inhibition or downregulation of HDAC7 restores polarity and lumen formation. Gene expression analysis of PATJ-deficient cells revealed an impaired expression of genes involved in cell junction assembly and membrane organization, which is rescued by the downregulation of HDAC7. Notably, the function of PATJ regulating HDAC7-dependent cilia formation does not depend on its canonical interaction partner, Pals1, indicating a new role of PATJ, which is distinct from its function in the Crumbs complex. By contrast, polarity and lumen phenotypes observed in Pals1- and PATJ-deficient epithelial cells can be rescued by inhibition of HDAC7, suggesting that the main function of this polarity complex in this process is to modulate the transcriptional profile of epithelial cells by inhibiting HDAC7.


Asunto(s)
Polaridad Celular , Uniones Estrechas , Bioensayo , Regulación hacia Abajo , Histona Desacetilasas/genética
19.
medRxiv ; 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36993625

RESUMEN

Background: Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below 30 years of age. Many monogenic forms have been discovered mainly due to comprehensive genetic testing like exome sequencing (ES). However, disease-causing variants in known disease-associated genes still only explain a proportion of cases. Aim of this study was to unravel the underlying molecular mechanism of syndromic CAKUT in two multiplex families with presumed autosomal recessive inheritance. Methods and Results: ES in the index individuals revealed two different rare homozygous variants in FOXD2, a transcription factor not previously implicated in CAKUT in humans: a frameshift in family 1 and a missense variant in family 2 with family segregation patterns consistent with autosomal-recessive inheritance. CRISPR/Cas9-derived Foxd2 knock-out (KO) mice presented with bilateral dilated renal pelvis accompanied by renal papilla atrophy while extrarenal features included mandibular, ophthalmologic, and behavioral anomalies, recapitulating the phenotype of humans with FOXD2 dysfunction. To study the pathomechanism of FOXD2-dysfunction-mediated developmental renal defects, in a complementary approach, we generated CRISPR/Cas9-mediated KO of Foxd2 in ureteric-bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important in renal/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a cell identity shift towards a stromal cell identity. Histology of Foxd2 KO mouse kidneys confirmed increased fibrosis. Further, GWAS data (genome-wide association studies) suggests that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Conclusions: In summary, our data implicate that FOXD2 dysfunction is a very rare cause of autosomal recessive syndromic CAKUT and suggest disturbances of the PAX2-WNT4 cell signaling axis contribute to this phenotype.

20.
Liver Int ; 43(2): 401-412, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36478640

RESUMEN

BACKGROUND AND AIMS: Autosomal dominant polycystic liver and kidney disease is a spectrum of hereditary diseases, which display disturbed function of primary cilia leading to cyst formation. In autosomal dominant polycystic kidney disease a genetic cause can be determined in almost all cases. However, in isolated polycystic liver disease (PLD) about half of all cases remain genetically unsolved, suggesting more, so far unidentified genes to be implicated in this disease. METHODS: Customized next-generation sequencing was used to identify the underlying pathogenesis in two related patients with PLD. A variant identified in SEC61A1 was further analysed in immortalized patients' urine sediment cells and in an epithelial cell model. RESULTS: In both patients, a heterozygous missense change (c.706C>T/p.Arg236Cys) was found in SEC61A1, which encodes for a subunit of the translocation machinery of protein biosynthesis at the endoplasmic reticulum (ER). While kidney disease is absent in the proposita, her mother displays an atypical polycystic kidney phenotype with severe renal failure. In immortalized urine sediment cells, mutant SEC61A1 is expressed at reduced levels, resulting in decreased levels of polycystin-2 (PC2). In an epithelial cell culture model, we found the proteasomal degradation of mutant SEC61A1 to be increased, whereas its localization to the ER is not affected. CONCLUSIONS: Our data expand the allelic and clinical spectrum for SEC61A1, adding PLD as a new and the major phenotypic trait in the family described. We further demonstrate that mutant SEC61A1 results in enhanced proteasomal degradation and impaired biosynthesis of PC2.


Asunto(s)
Quistes , Hepatopatías , Canales de Translocación SEC , Femenino , Humanos , Línea Celular , Quistes/genética , Hepatopatías/genética , Canales de Translocación SEC/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA