Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 1-8, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37953591

RESUMEN

Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are the most common motoneuron diseases affecting adults and infants, respectively. ALS and SMA are both characterized by the selective degeneration of motoneurons. Although different in their genetic etiology, growing evidence indicates that they share molecular and cellular pathogenic signatures that constitute potential common therapeutic targets. We previously described a motoneuron-specific death pathway elicited by the Fas death receptor, whereby vulnerable ALS motoneurons show an exacerbated sensitivity to Fas activation. However, the mechanisms that drive the loss of SMA motoneurons remains poorly understood. Here, we describe an in vitro model of SMA-associated degeneration using primary motoneurons derived from Smn2B/- SMA mice and show that Fas activation selectively triggers death of the proximal motoneurons. Fas-induced death of SMA motoneurons has the molecular signature of the motoneuron-selective Fas death pathway that requires activation of p38 kinase, caspase-8, -9 and -3 as well as upregulation of collapsin response mediator protein 4 (CRMP4). In addition, Rho-associated Kinase (ROCK) is required for Fas recruitment. Remarkably, we found that exogenous activation of Fas also promotes axonal elongation in both wildtype and SMA motoneurons. Axon outgrowth of motoneurons promoted by Fas requires the activity of ERK, ROCK and caspases. This work defines a dual role of Fas signaling in motoneurons that can elicit distinct responses from cell death to axonal growth.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia Muscular Espinal , Humanos , Ratones , Animales , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Axones/patología
2.
Brain ; 146(5): 1844-1858, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36314052

RESUMEN

Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neurological disorders, affecting either axons from the motor and/or sensory neurons or Schwann cells of the peripheral nervous system (PNS) and caused by more than 100 genes. We previously identified mutations in FGD4 as responsible for CMT4H, an autosomal recessive demyelinating form of CMT disease. FGD4 encodes FRABIN, a GDP/GTP nucleotide exchange factor, particularly for the small GTPase Cdc42. Remarkably, nerves from patients with CMT4H display excessive redundant myelin figures called outfoldings that arise from focal hypermyelination, suggesting that FRABIN could play a role in the control of PNS myelination. To gain insights into the role of FGD4/FRABIN in Schwann cell myelination, we generated a knockout mouse model (Fgd4SC-/-), with conditional ablation of Fgd4 in Schwann cells. We show that the specific deletion of FRABIN in Schwann cells leads to aberrant myelination in vitro, in dorsal root ganglia neuron/Schwann cell co-cultures, as well as in vivo, in distal sciatic nerves from Fgd4SC-/- mice. We observed that those myelination defects are related to an upregulation of some interactors of the NRG1 type III/ERBB2/3 signalling pathway, which is known to ensure a proper level of myelination in the PNS. Based on a yeast two-hybrid screen, we identified SNX3 as a new partner of FRABIN, which is involved in the regulation of endocytic trafficking. Interestingly, we showed that the loss of FRABIN impairs endocytic trafficking, which may contribute to the defective NRG1 type III/ERBB2/3 signalling and myelination. Using RNA-Seq, in vitro, we identified new potential effectors of the deregulated pathways, such as ERBIN, RAB11FIP2 and MAF, thereby providing cues to understand how FRABIN contributes to proper ERBB2 trafficking or even myelin membrane addition through cholesterol synthesis. Finally, we showed that the re-establishment of proper levels of the NRG1 type III/ERBB2/3 pathway using niacin treatment reduces myelin outfoldings in nerves of CMT4H mice. Overall, our work reveals a new role of FRABIN in the regulation of NRG1 type III/ERBB2/3 NRG1signalling and myelination and opens future therapeutic strategies based on the modulation of the NRG1 type III/ERBB2/3 pathway to reduce CMT4H pathology and more generally other demyelinating types of CMT disease.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Ratones , Enfermedad de Charcot-Marie-Tooth/genética , Factores de Intercambio de Guanina Nucleótido/genética , Ratones Noqueados , Mutación , Neurregulina-1/metabolismo , Células de Schwann , Nervio Ciático/patología , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo
3.
PLoS One ; 17(10): e0272097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36194565

RESUMEN

While lactate shuttle theory states that glial cells metabolize glucose into lactate to shuttle it to neurons, how glial cells support axonal metabolism and function remains unclear. Lactate production is a common occurrence following anaerobic glycolysis in muscles. However, several other cell types, including some stem cells, activated macrophages and tumor cells, can produce lactate in presence of oxygen and cellular respiration, using Pyruvate Kinase 2 (PKM2) to divert pyruvate to lactate dehydrogenase. We show here that PKM2 is also upregulated in myelinating Schwann cells (mSC) of mature mouse sciatic nerve versus postnatal immature nerve. Deletion of this isoform in PLP-expressing cells in mice leads to a deficit of lactate in mSC and in peripheral nerves. While the structure of myelin sheath was preserved, mutant mice developed a peripheral neuropathy. Peripheral nerve axons of mutant mice failed to maintain lactate homeostasis upon activity, resulting in an impaired production of mitochondrial ATP. Action potential propagation was not altered but axonal mitochondria transport was slowed down, muscle axon terminals retracted and motor neurons displayed cellular stress. Additional reduction of lactate availability through dichloroacetate treatment, which diverts pyruvate to mitochondrial oxidative phosphorylation, further aggravated motor dysfunction in mutant mice. Thus, lactate production through PKM2 enzyme and aerobic glycolysis is essential in mSC for the long-term maintenance of peripheral nerve axon physiology and function.


Asunto(s)
Axones , Piruvato Quinasa , Adenosina Trifosfato/metabolismo , Animales , Axones/metabolismo , Glucosa/metabolismo , Glucólisis , Lactato Deshidrogenasas , Lactatos/metabolismo , Ratones , Vaina de Mielina/metabolismo , Oxígeno/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Piruvatos/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/patología
4.
Neurobiol Dis ; 164: 105609, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34990802

RESUMEN

We recently described new pathogenic variants in VRK1, in patients affected with distal Hereditary Motor Neuropathy associated with upper motor neurons signs. Specifically, we provided evidences that hiPSC-derived Motor Neurons (hiPSC-MN) from these patients display Cajal Bodies (CBs) disassembly and defects in neurite outgrowth and branching. We here focused on the Axonal Initial Segment (AIS) and the related firing properties of hiPSC-MNs from these patients. We found that the patient's Action Potential (AP) was smaller in amplitude, larger in duration, and displayed a more depolarized threshold while the firing patterns were not altered. These alterations were accompanied by a decrease in the AIS length measured in patients' hiPSC-MNs. These data indicate that mutations in VRK1 impact the AP waveform and the AIS organization in MNs and may ultimately lead to the related motor neuron disease.


Asunto(s)
Potenciales de Acción/fisiología , Segmento Inicial del Axón/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Neuronas Motoras/fisiología , Proteínas Serina-Treonina Quinasas/genética , Línea Celular , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/metabolismo , Enfermedad de la Neurona Motora/fisiopatología , Mutación , Mioblastos/metabolismo
5.
Glia ; 70(5): 842-857, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34978340

RESUMEN

In amyotrophic lateral sclerosis (ALS) caused by SOD1 gene mutations, both cell-autonomous and noncell-autonomous mechanisms lead to the selective degeneration of motoneurons (MN). Here, we evaluate the therapeutic potential of gene therapy targeting mutated SOD1 in mature astrocytes using mice expressing the mutated SOD1G93A protein. An AAV-gfaABC1 D vector encoding an artificial microRNA is used to deliver RNA interference against mutated SOD1 selectively in astrocytes. The treatment leads to the progressive rescue of neuromuscular junction occupancy, to the recovery of the compound muscle action potential in the gastrocnemius muscle, and significantly improves neuromuscular function. In the spinal cord, gene therapy targeting astrocytes protects a small pool of the most vulnerable fast-fatigable MN until disease end stage. In the gastrocnemius muscle of the treated SOD1G93A mice, the fast-twitch type IIB muscle fibers are preserved from atrophy. Axon collateral sprouting is observed together with muscle fiber type grouping indicative of denervation/reinnervation events. The transcriptome profiling of spinal cord MN shows changes in the expression levels of factors regulating the dynamics of microtubules. Gene therapy delivering RNA interference against mutated SOD1 in astrocytes protects fast-fatigable motor units and thereby improves neuromuscular function in ALS mice.


Asunto(s)
Esclerosis Amiotrófica Lateral , Superóxido Dismutasa-1/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/terapia , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Interferencia de ARN , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética
6.
Hum Mol Genet ; 28(14): 2378-2394, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31090908

RESUMEN

Distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of diseases, resembling Charcot-Marie-Tooth syndromes, but characterized by an exclusive involvement of the motor part of the peripheral nervous system. Here, we describe two new compound heterozygous mutations in VRK1, the vaccinia-related kinase 1 gene, in two siblings from a Lebanese family, affected with dHMN associated with upper motor neurons (MNs) signs. The mutations lead to severely reduced levels of VRK1 by impairing its stability, and to a shift of nuclear VRK1 to cytoplasm. Depletion of VRK1 from the nucleus alters the dynamics of coilin, a phosphorylation target of VRK1, by reducing its stability through increased proteasomal degradation. In human-induced pluripotent stem cell-derived MNs from patients, we demonstrate that this drop in VRK1 levels leads to Cajal bodies (CBs) disassembly and to defects in neurite outgrowth and branching. Mutations in VRK1 have been previously reported in several neurological diseases affecting lower or both upper and lower MNs. Here, we describe a new phenotype linked to VRK1 mutations, presenting as a classical slowly progressive motor neuropathy, beginning in the second decade of life, with associated upper MN signs. We provide, for the first time, evidence for a role of VRK1 in regulating CB assembly in MNs. The observed MN defects are consistent with a length dependent axonopathy affecting lower and upper MNs, and we propose that diseases due to mutations in VRK1 should be grouped under a unique entity named `VRK1-related motor neuron disease'.


Asunto(s)
Cuerpos Enrollados/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedad de la Neurona Motora/metabolismo , Neuronas Motoras/citología , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Adulto , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Células Madre Pluripotentes Inducidas/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Persona de Mediana Edad , Neuronas Motoras/metabolismo , Mutación , Fenotipo , Inhibidores de Proteasoma/farmacología , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Secuenciación del Exoma
7.
Proc Natl Acad Sci U S A ; 116(6): 2328-2337, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659145

RESUMEN

Mutations in the MFN2 gene encoding Mitofusin 2 lead to the development of Charcot-Marie-Tooth type 2A (CMT2A), a dominant axonal form of peripheral neuropathy. Mitofusin 2 is localized at both the outer membrane of mitochondria and the endoplasmic reticulum and is particularly enriched at specialized contact regions known as mitochondria-associated membranes (MAM). We observed that expression of MFN2R94Q induces distal axonal degeneration in the absence of overt neuronal death. The presence of mutant protein leads to reduction in endoplasmic reticulum and mitochondria contacts in CMT2A patient-derived fibroblasts, in primary neurons and in vivo, in motoneurons of a mouse model of CMT2A. These changes are concomitant with endoplasmic reticulum stress, calcium handling defects, and changes in the geometry and axonal transport of mitochondria. Importantly, pharmacological treatments reinforcing endoplasmic reticulum-mitochondria cross-talk, or reducing endoplasmic reticulum stress, restore the mitochondria morphology and prevent axonal degeneration. These results highlight defects in MAM as a cellular mechanism contributing to CMT2A pathology mediated by mutated MFN2.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Animales , Axones/metabolismo , Transporte Biológico , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Modelos Animales de Enfermedad , Retículo Endoplásmico/ultraestructura , Femenino , Marcha , Locomoción/genética , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/ultraestructura , Neuronas Motoras/metabolismo , Desnervación Muscular , Fibras Musculares de Contracción Lenta , Transducción de Señal
8.
Cell Death Dis ; 9(3): 333, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29491369

RESUMEN

Recent progress in the understanding of neurodegenerative diseases revealed that multiple molecular mechanisms contribute to pathological changes in neurons. A large fraction of these alterations can be linked to dysfunction in the endoplasmic reticulum (ER) and mitochondria, affecting metabolism and secretion of lipids and proteins, calcium homeostasis, and energy production. Remarkably, these organelles are interacting with each other at specialized domains on the ER called mitochondria-associated membranes (MAMs). These membrane structures rely on the interaction of several complexes of proteins localized either at the mitochondria or at the ER interface and serve as an exchange platform of calcium, metabolites, and lipids, which are critical for the function of both organelles. In addition, recent evidence indicates that MAMs also play a role in the control of mitochondria dynamics and autophagy. MAMs thus start to emerge as a key element connecting many changes observed in neurodegenerative diseases. This review will focus on the role of MAMs in amyotrophic lateral sclerosis (ALS) and hereditary motor and sensory neuropathy, two neurodegenerative diseases particularly affecting neurons with long projecting axons. We will discuss how defects in MAM signaling may impair neuronal calcium homeostasis, mitochondrial dynamics, ER function, and autophagy, leading eventually to axonal degeneration. The possible impact of MAM dysfunction in glial cells, which may affect the capacity to support neurons and/or axons, will also be described. Finally, the possible role of MAMs as an interesting target for development of therapeutic interventions aiming at delaying or preventing neurodegeneration will be highlighted.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Neuronas Motoras/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Retículo Endoplásmico/genética , Humanos , Mitocondrias/genética , Enfermedades Neurodegenerativas/genética
9.
J Neurol Neurosurg Psychiatry ; 89(8): 870-878, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29449460

RESUMEN

BACKGROUND: Charcot-Marie-Tooth type 2 (CMT2) neuropathy is characterised by a vast clinical and genetic heterogeneity complicating its diagnosis and therapeutic intervention. Identification of molecular signatures that are common to multiple CMT2 subtypes can aid in developing therapeutic strategies and measuring disease outcomes. METHODS: A proteomics-based approach was performed on lymphoblasts from CMT2 patients genetically diagnosed with different gene mutations to identify differentially regulated proteins. The candidate proteins were validated through real-time quantitative PCR and western blotting on lymphoblast samples of patients and controls, motor neurons differentiated from patient-derived induced pluripotent stem cells (iPSCs) and sciatic nerves of CMT2 mouse models. RESULTS: Proteomic profiling of patient lymphoblasts resulted in the identification of profilin 2 (PFN2) and guanidinoacetate methyltransferase (GAMT) as commonly downregulated proteins in different genotypes compared with healthy controls. This decrease was also observed at the transcriptional level on screening 43 CMT2 patients and 22 controls, respectively. A progressive decrease in PFN2 expression with age was observed in patients, while in healthy controls its expression increased with age. Reduced PFN2 expression was also observed in motor neurons differentiated from CMT2 patient-derived iPSCs and sciatic nerves of CMT2 mice when compared with controls. However, no change in GAMT levels was observed in motor neurons and CMT2 mouse-derived sciatic nerves. CONCLUSIONS: We unveil PFN2 and GAMT as molecular determinants of CMT2 with possible indications of the role of PFN2 in the pathogenesis and disease progression. This is the first study describing biomarkers that can boost the development of therapeutic strategies targeting a wider spectrum of CMT2 patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Genotipo , Guanidinoacetato N-Metiltransferasa/genética , Mutación , Profilinas/genética , Adulto , Anciano , Axones/patología , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Proteómica , Adulto Joven
10.
Hum Mol Genet ; 26(3): 582-598, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28053050

RESUMEN

To understand the cause of Parkinson's disease (PD), it is important to determine the functional interactions between factors linked to the disease. Parkin is associated with autosomal recessive early-onset PD, and controls the transcription of PGC-1α, a master regulator of mitochondrial biogenesis. These two factors functionally interact to regulate the turnover and quality of mitochondria, by increasing both mitophagic activity and mitochondria biogenesis. In cortical neurons, co-expressing PGC-1α and Parkin increases the number of mitochondria, enhances maximal respiration, and accelerates the recovery of the mitochondrial membrane potential following mitochondrial uncoupling. PGC-1α enhances Mfn2 transcription, but also leads to increased degradation of the Mfn2 protein, a key ubiquitylation target of Parkin on mitochondria. In vivo, Parkin has significant protective effects on the survival and function of nigral dopaminergic neurons in which the chronic expression of PGC-1α is induced. Ultrastructural analysis shows that these two factors together control the density of mitochondria and their interaction with the endoplasmic reticulum. These results highlight the combined effects of Parkin and PGC-1α in the maintenance of mitochondrial homeostasis in dopaminergic neurons. These two factors synergistically control the quality and function of mitochondria, which is important for the survival of neurons in Parkinson's disease.


Asunto(s)
GTP Fosfohidrolasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Trastornos Parkinsonianos/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ubiquitina-Proteína Ligasas/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/ultraestructura , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Humanos , Potencial de la Membrana Mitocondrial/genética , Mitocondrias/patología , Mitocondrias/ultraestructura , Biogénesis de Organelos , Estrés Oxidativo/genética , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo
12.
Brain ; 138(Pt 4): 875-90, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25678561

RESUMEN

Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases.


Asunto(s)
Retículo Endoplásmico/genética , Mitocondrias/genética , Enfermedad de la Neurona Motora/genética , Receptores sigma/genética , Animales , Células Cultivadas , Retículo Endoplásmico/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Enfermedad de la Neurona Motora/metabolismo , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Ratas , Receptor Cross-Talk , Receptor Sigma-1
13.
Neurobiol Dis ; 73: 130-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25277755

RESUMEN

Although the precise signaling mechanisms underlying the vulnerability of some sub-populations of motoneurons in ALS remain unclear, critical factors such as metallo-proteinase 9 expression, neuronal activity and endoplasmic reticulum stress have been shown to be involved. In the context of SOD1(G93A) ALS mouse model, we previously showed that a two-fold decrease in calreticulin (CRT) is occurring in the vulnerable fast motoneurons. Here, we asked to which extent the decrease in CRT levels was causative to muscle denervation and/or motoneuron degeneration. Toward this goal, a hemizygous deletion of the crt gene in SOD1(G93A) mice was generated since the complete ablation of crt is embryonic lethal. We observed that SOD1(G93A);crt(+/-) mice display increased and earlier muscle weakness and muscle denervation compared to SOD1(G93A) mice. While CRT reduction in motoneurons leads to a strong upregulation of two factors important in motoneuron dysfunction, ER stress and mTOR activation, it does not aggravate motoneuron death. Our results underline a prevalent role for CRT levels in the early phase of muscle denervation and support CRT regulation as a potential therapeutic approach.


Asunto(s)
Esclerosis Amiotrófica Lateral/complicaciones , Calreticulina/metabolismo , Regulación de la Expresión Génica/genética , Neuronas Motoras/patología , Enfermedades Musculares/etiología , Degeneración Nerviosa/etiología , Factor de Transcripción Activador 6/metabolismo , Factores de Edad , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Calreticulina/genética , Modelos Animales de Enfermedad , Factor 2 Eucariótico de Iniciación/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Debilidad Muscular/etiología , Enfermedades Musculares/patología , Receptores Colinérgicos/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/genética , Serina-Treonina Quinasas TOR , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
14.
Hum Mol Genet ; 22(20): 4224-32, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23777631

RESUMEN

Charcot-Marie-Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CMT, we identified overlapping regions of homozygosity on chromosome 1p36 with a combined maximum LOD score of 5.4. Molecular investigation of the genes from this region allowed identification of two homozygous mutations in PLEKHG5 that produce premature stop codons and are predicted to result in functional null alleles. Analysis of Plekhg5 in the mouse revealed that this gene is expressed in neurons and glial cells of the peripheral nervous system, and that knockout mice display reduced nerve conduction velocities that are comparable with those of affected individuals from both families. Interestingly, a homozygous PLEKHG5 missense mutation was previously reported in a recessive form of severe childhood onset lower motor neuron disease (LMND) leading to loss of the ability to walk and need for respiratory assistance. Together, these observations indicate that different mutations in PLEKHG5 lead to clinically diverse outcomes (intermediate CMT or LMND) affecting the function of neurons and glial cells.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Genes Recesivos , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factores de Intercambio de Guanina Nucleótido/genética , Adulto , Edad de Inicio , Animales , Niño , Cromosomas Humanos Par 1/genética , Codón sin Sentido , Femenino , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Enfermedad de la Neurona Motora/genética , Mutación Missense , Neuroglía/metabolismo , Neuroglía/fisiología , Neuronas/metabolismo , Adulto Joven
15.
Hum Mutat ; 34(7): 953-60, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23568759

RESUMEN

The dihydropyrimidinase-like 3 (DPYSL3) or Collapsin Response Mediator Protein 4a (CRMP4a) expression is modified in neurodegeneration and is involved in several ALS-associated pathways including axonal transport, glutamate excitotoxicity, and oxidative stress. The objective of the study was to analyze CRMP4 as a risk factor for ALS. We analyzed the DPYSL3/CRMP4 gene in French ALS patients (n = 468) and matched-controls (n = 394). We subsequently examined a variant in a Swedish population (184 SALS, 186 controls), and evaluated its functional effects on axonal growth and survival in motor neuron cell culture. The rs147541241:A>G missense mutation occurred in higher frequency among French ALS patients (odds ratio = 2.99) but the association was not confirmed in the Swedish population. In vitro expression of mutated DPYSL3 in motor neurons reduced axonal growth and accelerated cell death compared with wild type protein. Thus, the association between the rs147541241 variant and ALS was limited to the French population, highlighting the geographic particularities of genetic influences (risks, contributors). The identified variant appears to shorten motor neuron survival through a detrimental effect on axonal growth and CRMP4 could act as a key unifier in transduction pathways leading to neurodegeneration through effects on early axon development.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/metabolismo , Proteínas Musculares/genética , Mutación Missense , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/etnología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Axones/metabolismo , Muerte Celular/genética , Células Cultivadas , Femenino , Francia/epidemiología , Humanos , Masculino , Ratones , Neuronas Motoras/citología , Suecia/epidemiología
16.
J Neurodegener Dis ; 2013: 746845, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26316997

RESUMEN

While studies on death receptors have long been restricted to immune cells, the last decade has provided a strong body of evidence for their implication in neuronal death and hence neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). ALS is a fatal paralytic disorder that primarily affects motoneurons in the brain and spinal cord. A neuroinflammatory process, associated with astrocyte and microglial activation as well as infiltration of immune cells, accompanies motoneuron degeneration and supports the contribution of non-cell-autonomous mechanisms in the disease. Hallmarks of Fas, TNFR, LT-ßR, and p75(NTR) signaling have been observed in both animal models and ALS patients. This review summarizes to date knowledge of the role of death receptors in ALS and the link existing between the selective loss of motoneurons and neuroinflammation. It further suggests how this recent evidence could be included in an ultimate multiapproach to treat patients.

17.
J Neurosci ; 32(14): 4901-12, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22492046

RESUMEN

Cellular responses to protein misfolding are thought to play key roles in triggering neurodegeneration. In the mutant superoxide dismutase (mSOD1) model of amyotrophic lateral sclerosis (ALS), subsets of motoneurons are selectively vulnerable to degeneration. Fast fatigable motoneurons selectively activate an endoplasmic reticulum (ER) stress response that drives their early degeneration while a subset of mSOD1 motoneurons show exacerbated sensitivity to activation of the motoneuron-specific Fas/NO pathway. However, the links between the two mechanisms and the molecular basis of their cellular specificity remained unclear. We show that Fas activation leads, specifically in mSOD1 motoneurons, to reductions in levels of calreticulin (CRT), a calcium-binding ER chaperone. Decreased expression of CRT is both necessary and sufficient to trigger SOD1(G93A) motoneuron death through the Fas/NO pathway. In SOD1(G93A) mice in vivo, reductions in CRT precede muscle denervation and are restricted to vulnerable motor pools. In vitro, both reduced CRT and Fas activation trigger an ER stress response that is restricted to, and required for death of, vulnerable SOD1(G93A) motoneurons. Our data reveal CRT as a critical link between a motoneuron-specific death pathway and the ER stress response and point to a role of CRT levels in modulating motoneuron vulnerability to ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Calreticulina/antagonistas & inhibidores , Calreticulina/metabolismo , Estrés del Retículo Endoplásmico/genética , Neuronas Motoras/metabolismo , Receptor fas/genética , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/genética , Animales , Muerte Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/enzimología , Neuronas Motoras/patología , Mutación/genética , Transducción de Señal/genética , Superóxido Dismutasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA