Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Spectrosc ; : 37028241267925, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39094009

RESUMEN

Raman spectroscopy, a versatile and nondestructive technique, was employed to develop a methodology for gallium oxide (Ga2O3) phase detection and identification. This methodology combines experimental results with a comprehensive literature survey. The established Raman approach offers a powerful tool for nondestructively assessing phase purity and detecting secondary phases in Ga2O3 thin films. X-ray diffraction was used for comparison, highlighting the complementary information that these techniques may provide for Ga2O3 characterization. Few case studies are included to demonstrate the usefulness of the proposed spectroscopic approach, namely the impact of deposition conditions such as metal-organic vapor-phase epitaxy and pulsed electron deposition (PED), and extrinsic elements provided during growth (Sn in the case of PED) on Ga2O3 polymorphism. In conclusion, it is shown that Raman spectroscopy offers a quick, reliable, and nondestructive high-resolution approach for Ga2O3 thin film characterization, especially concerning phase detection and crystalline quality.

2.
Environ Res ; 252(Pt 1): 118878, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582417

RESUMEN

Fibrous erionite is the only zeolite classified as Group 1 carcinogen by the International Agency for Research on Cancer (IARC). Carcinogenesis induced by erionite is thought to involve several factors as biopersistence, the iron role and cation exchange processes. To better understand these mechanisms, a detailed investigation at the micro scale was performed, collecting elemental information on iron and cation release and their distribution in biological systems by synchrotron micro-X-ray fluorescence mapping (SR-micro-XRF) and synchrotron micro-X-ray absorption spectroscopy (SR-micro-XANES) at the TwinMic beamline (Elettra synchrotron) and at the ID21 beamline of the European Synchrotron Radiation Facility (ESRF). By microscopy and chemical mapping, highly detailed maps of the chemical and morphological interaction of biological systems with fibres could be produced. In detail, THP-1 cell line derived macrophages, used as in vitro model, were analysed during erionite-Na phagocytosis at different time intervals, after single dose exposure. For comparison, cellular fluorescent probes were also used to evaluate the intracellular free sodium and calcium concentrations. Synchrotron analyses visualised the spatial distribution of both fibre and mineral particle associated metals during the phagocytosis, describing the mechanism of internalisation of erionite-Na and its accessory mineral phases. The intracellular distribution of metals and other cations was mapped to evaluate metal release, speciation changes and/or cation exchange during phagocytosis. The fluorescent probes complemented microchemical data clarifying, and confirming, the cation distribution observed in the SR-micro-XRF maps. The significant cytoplasmic calcium decrease, and the concomitant sodium increase, after the fibre phagocytosis seemed due to activation of plasma membrane cations exchangers triggered by the internalisation while, surprisingly, the ion-exchange capacity of erionite-Na could play a minor role in the disruption of the two cations intracellular homeostasis. These results help to elucidate the role of cations in the toxicity of erionite-treated THP-1 macrophages and add knowledge to its carcinogenicity process.


Asunto(s)
Macrófagos , Sincrotrones , Zeolitas , Humanos , Zeolitas/toxicidad , Zeolitas/química , Macrófagos/efectos de los fármacos , Células THP-1 , Cationes , Espectrometría por Rayos X , Fagocitosis/efectos de los fármacos , Calcio/metabolismo , Sodio
3.
ACS Appl Mater Interfaces ; 16(12): 14704-14711, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38494603

RESUMEN

Interfacial regions play a key role in determining the overall power conversion efficiency of thin film solar cells. However, the nanoscale investigation of thin film interfaces using conventional analytical tools is challenging due to a lack of required sensitivity and spatial resolution. Here, we surmount these obstacles using tip-enhanced Raman spectroscopy (TERS) and apply it to investigate the absorber (Sb2Se3) and buffer (CdS) layers interface in a Sb2Se3-based thin film solar cell. Hyperspectral TERS imaging with 10 nm spatial resolution reveals that the investigated interface between the absorber and buffer layers is far from uniform, as TERS analysis detects an intermixing of chemical compounds instead of a sharp demarcation between the CdS and Sb2Se3 layers. Intriguingly, this interface, comprising both Sb2Se3 and CdS compounds, exhibits an unexpectedly large thickness of 295 ± 70 nm attributable to the roughness of the Sb2Se3 layer. Furthermore, TERS measurements provide compelling evidence of CdS penetration into the Sb2Se3 layer, likely resulting from unwanted reactions on the absorber surface during chemical bath deposition. Notably, the coexistence of ZnO, which serves as the uppermost conducting layer, and CdS within the Sb2Se3-rich region has been experimentally confirmed for the first time. This study underscores TERS as a promising nanoscale technique to investigate thin film inorganic solar cell interfaces, offering novel insights into intricate interface structures and compound intermixing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA