Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Energy ; 285: 116429, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33519037

RESUMEN

The COVID-19 pandemic spreads rapidly around the world, and has given rise to huge impacts on all aspects of human society. This study utilizes big data techniques to analyze the impacts of COVID-19 on the user behaviors and environmental benefits of bike sharing. In this study, a novel method is proposed to calculate the trip distances and trajectories via a python package OSMnx so as to accurately estimate the environmental benefits of bike sharing. In addition, we employ the topological indices arising from complex network theory to quantitatively analyze the transformation of user behavior pattern of bike sharing during the COVID-19 pandemic. The results show that this pandemic has impacted the user behaviors and environmental benefits of bike sharing in Beijing significantly. During the pandemic, the estimated reductions of energy consumption and emissions on 6th Feb decreased to approximately 1 in 17 of those on a normal day, and the environmental benefits at most recovered to 70% of those in normal days. The impacts of COVID-19 on the environmental benefits in different districts are different. Furthermore, the decline of average strength and strength distribution obeying exponential distribution but with different slope rates suggests that people are less likely to take bike sharing to the places where were popular before. The pandemic has also increased the average trip time of bike sharing. Our research may facilitate the understanding of the impacts of COVID-19 pandemic on our society and environment, and also provide clues to adapt to this unprecedented pandemic so as to respond to similar events in the future.

2.
Sensors (Basel) ; 14(8): 15142-62, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25196014

RESUMEN

Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.


Asunto(s)
Redes de Comunicación de Computadores/instrumentación , Tecnología Inalámbrica/instrumentación , Algoritmos , Industria de la Construcción/instrumentación , Suministros de Energía Eléctrica , Urgencias Médicas , Humanos , Reproducibilidad de los Resultados , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA