Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 15(11): 5429-5436, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36843427

RESUMEN

Flexible perovskite solar cells (FPSCs) have attracted considerable attention due to their broad application possibilities in next generation electronics. However, the commonly used transparent conductive electrodes (TCEs), such as indium tin oxide (ITO), suffer from poor flexible performance, impeding the development of FPSCs. Here, we propose a hybrid electrode (PUA/AgNWs/PH1000) comprising a thin percolation network of silver nanowires (AgNWs) inlaid on the surface of a flexible substrate (PUA) modified with a conductive layer (PH1000), which exhibits high optical transmittance and electrical conductivity, as well as robust mechanical flexibility. By applying the proposed PUA/AgNWs/PH1000 hybrid electrode in FPSCs, the resulting ITO-free devices exhibit the desired flexibility and mechanical stability; it can survive repeated continuous bending cycles and retain 77.4% of its initial power conversion efficiency after 10 000 bending cycles with the bending radius of 5 mm.

2.
Opt Lett ; 47(15): 3744-3747, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913304

RESUMEN

We propose a facile, scalable strategy to introduce spontaneously formed disordered wrinkles into organic light-emitting devices (OLEDs) to enhance light extraction and realize stretchability of the devices. The luminance and current efficiency of the wrinkled OLEDs are improved by 37% and 18%, respectively, compared to the planar device. Meanwhile, broadband light scattering induced by the disordered wrinkles results in angle-stable electroluminescent spectra at wide viewing angles for the wrinkled OLEDs. The disordered wrinkles enable the OLEDs to be stretchable and withstand hundreds of stretching-releasing cycles at strain between 0% and 5%. This study provides a simple method to realize stretchable OLEDs with high efficiency.

3.
Nanoscale ; 13(29): 12423-12437, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34259675

RESUMEN

Owing to the economical and practical solution synthesis and coating strategies, silver nanowires (AgNWs) have been considered as one of the most suitable alternative materials to replace commercial indium tin oxide (ITO) transparent electrodes. The primitive AgNW electrode cannot meet the requirements for preparing high performance optoelectronic devices due to its high contact resistance, large surface roughness and poor stability. Thus, various post-treatments for AgNW film optimization are needed before its actual applications, such as welding treatment to decrease contact resistance and passivation to increase film stability. This review investigates recent progress on the preparation and optimization of AgNWs. Moreover, some unique fabrication strategies to produce highly oriented AgNW films with unique anisotropic properties have also been carried out with detailed analysis. The representative devices based on the AgNW electrode have been summarized and discussed at the end of this review.

4.
Opt Lett ; 45(17): 4879-4882, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32870881

RESUMEN

An ultrathin metal film with high transmittance and conductivity has been demonstrated to be a promising transparent electrode for organic light-emitting devices (OLEDs). However, mediocre surface morphology and continuity of evaporated metal films and the surface plasmon-polaritons (SPPs) energy loss between the metal electrode and organic layer still limit the external quantum efficiency (EQE) of OLEDs. Here, nanoimprint lithography has been directly applied on the ultrathin Au film with underlying uncured photopolymer to fabricate the nanopillared anode. Both the conductivity and transmittance of the nanopillared ultrathin Au film have been improved due to the improvement of continuity and surface smoothness. As we expected, the SPPs mode has been coupled into photons and further extracted from OLEDs by using the nanopillared Au film anode. Finally, 19.2% and 70.1% enhancement of current efficiency were achieved compared to the planar device with ultrathin Au anode and ITO anode, respectively.

5.
Opt Lett ; 45(18): 5156-5159, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32932476

RESUMEN

We report an improved light extraction in all-inorganic perovskite light-emitting devices (PeLEDs) by integrating a periodic corrugated nanostructure at the metallic cathode/organic interface. Nanoimprinting lithography was used to introduce the nanostructures onto the surface of the electron transport layer directly to avoid influencing the morphology and crystallinity of the perovskite film underneath. The trapped energy at the metallic electrode has been successfully outcoupled by the excitation of the surface plasma polariton (SPP) modes induced by the periodic corrugations. The luminance and current efficiency of the periodically corrugated PeLED exhibit enhancements of 42% and 28%, respectively, compared to those of the planar PeLED. The finite-difference time-domain simulation was used to confirm the efficient outcoupling of the SPP modes.

6.
Opt Lett ; 44(19): 4817-4820, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31568450

RESUMEN

We demonstrate an enhanced efficiency of all-inorganic perovskite light-emitting diodes (PeLEDs) by doping an electron acceptor of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as a p-type dopant into the hole-transport layer (HTL) of poly-triarylamine (PTAA). The conductivity of the PTAA was improved by the formation of the CT complex through the electron transfer from the PTAA to F4TCNQ. Moreover, the hydrophobic surface of the PTAA leads to an improved surface morphology of the perovskite films compared to that on the conventionally used HTL of PEDOT:PSS. As a result, the maximum luminance and efficiency for the doped PTAA-based PeLEDs are 28020 cd/m2 and 13.5 cd/A, respectively, corresponding to 32.7% and 48% improvement in the efficiency compared to those of the pure PTAA or PEDOT:PSS-based PeLEDs.

7.
Nanoscale ; 9(48): 19353-19359, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29199741

RESUMEN

Organic single crystals have attracted great attention because of their advantages such as high carrier mobility and high thermal stability. Amplified spontaneous emission (ASE) is an important parameter for the optoelectronic applications of organic single crystals. Here, surface plasmon-enhanced ASE from the organic single crystals has been demonstrated by integrating graphene/copper nanoparticle (Cu NP) hybrid nanostructures. Graphene is fully accommodating to the topography of Cu NPs by the transfer-free as-grown method for the configuration of the hybrid nanostructures, which makes full electrical contact and strong interactions between graphene and the local electric field of surface plasmon resonances. The enhanced localized surface plasmon resonances induced by the hybrid nanostructures result in an enhanced intensity and lowered threshold of ASE from the organic single crystals. Moreover, the as-grown graphene sheets covering fully and uniformly on the Cu NPs act as a barrier against oxidation, and results in an enhanced stability of the fluorescence from the crystals.

8.
Sci Rep ; 6: 37190, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27872494

RESUMEN

The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics.

9.
Nat Commun ; 7: 11573, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27187936

RESUMEN

Stretchable organic light-emitting devices are becoming increasingly important in the fast-growing fields of wearable displays, biomedical devices and health-monitoring technology. Although highly stretchable devices have been demonstrated, their luminous efficiency and mechanical stability remain impractical for the purposes of real-life applications. This is due to significant challenges arising from the high strain-induced limitations on the structure design of the device, the materials used and the difficulty of controlling the stretch-release process. Here we have developed a laser-programmable buckling process to overcome these obstacles and realize a highly stretchable organic light-emitting diode with unprecedented efficiency and mechanical robustness. The strained device luminous efficiency -70 cd A(-1) under 70% strain - is the largest to date and the device can accommodate 100% strain while exhibiting only small fluctuations in performance over 15,000 stretch-release cycles. This work paves the way towards fully stretchable organic light-emitting diodes that can be used in wearable electronic devices.

10.
Nanoscale ; 8(19): 10010-5, 2016 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-27128168

RESUMEN

An ultrathin, ultrasmooth and flexible Au film as an alternative of the indium-tin oxide (ITO) electrode in organic light-emitting devices (OLEDs) has been reported. The 7 nm Au film shows excellent surface morphology, optical and electronic characteristics including a root-mean-square roughness of 0.35 nm, a high transparency of 72% at 550 nm, and a sheet resistance of 23.75 Ω sq(-1). These features arise from the surface modification of the glass substrate by using a SU-8 film, which fixes metal atoms via chemical bond interactions between Au and SU-8 film to suppress the island growth mode. A 17% enhancement in current efficiency has been obtained from the OLEDs based on the ultrathin Au electrodes compared to that of the devices with the ITO electrodes. The OLEDs with the ultrathin Au/SU-8 anodes exhibit high flexibility and mechanical robustness.

11.
Sci Rep ; 4: 7108, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25407776

RESUMEN

We demonstrate an effective approach to realize excitation and outcoupling of the SPP modes associated with both cathode/organic and anode/organic interfaces in OLEDs by integrating dual-periodic corrugation. The dual-periodic corrugation consists of two set gratings with different periods. The light trapped in the SPP modes associated with both top and bottom electrode/organic interfaces are efficiently extracted from the OLEDs by adjusting appropriate periods of two set corrugations, and a 29% enhancement in the current efficiency has been obtained.

12.
Adv Mater ; 25(48): 6969-74, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24352984

RESUMEN

A dual-periodic corrugation consisting of two sets of gratings with different periods to realize a broadband light extraction in white organic light-emitting diodes (WOLEDs) is shown. A 37% enhancement in current efficiency and 48% enhancement in the external quantum efficiency compared to those of the conventional planar devices have been obtained. Besides the much improved efficiency, the dual-periodic corrugated WOLEDs exhibit satisfying viewing characteristics.

13.
Nanoscale ; 5(22): 10811-5, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24061157

RESUMEN

An ultra-smooth Ag film with sub-nanometer surface roughness on a flexible substrate has been fabricated by a template-stripping process and its effect on the carrier injection and transport in organic light-emitting devices (OLEDs) has been investigated. The use of the ultra-smooth Ag film as an electrode results in both enhanced carried injection due to the improved contact between the electrode and the organic layer and enhanced carrier transport due to the larger grain size of the deposited organic layer on it. The ultra-smooth Ag film on the flexible substrate has been applied in inverted top-emitting OLEDs (ITOLEDs) as cathode, which exhibit improved efficiency due to the enhanced electron injection and transport. The maximum current efficiency of the ITOLEDs on the flexible substrate is 9.72 cd A(-1), whereas it is 6.03 cd A(-1) for the devices on the conventional Si substrate, which corresponds to about a 62% enhancement. Moreover, the flexible ITOLEDs keep their good performance under a small bending radius and after repeated bending.

14.
Opt Lett ; 37(2): 124-6, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22854441

RESUMEN

We demonstrate optimized viewing-angle characteristics from top-emitting organic light-emitting devices by integrating a periodic microstructure into the cavity. A holographic lithography technique combined with filling process of the groove by spin coating of a polymer film has been employed to enable its periodically and gradually changed cavity length and suppress the viewing-angle dependence of the peak emission wavelength and intensity. The theoretical and experimental results support that the proposed microstructured cavity can resolve the angular-dependence effect in a very simple and effective way, and a desired omnidirectional emission has been obtained.

15.
Adv Mater ; 24(9): 1187-91, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22278992

RESUMEN

The introduction of a periodic corrugation into TOLEDs is demonstrated to be effective in relieving the tradeoff between device stability and efficiency, through the cross coupling of the SPPs associated with the Ag cathode and the microcavity modes. The thickness of the Ag cathode for the corrugated TOLEDs was increased from 20 to 45 nm, and both the device lifetime and efficiency are significantly improved. The figure shows a schematic cross section of a red TOLED with periodic microstructure and an operating TOLED with both corrugated and planar area.


Asunto(s)
Luz , Óptica y Fotónica/instrumentación , Plata/química , Electrodos , Diseño de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA