RESUMEN
Iron-doping modification is a prevailing approach for improving adsorption capability of biochar with environmental friendliness, but usually requires high temperature and suffers from iron aggregation. Herein, a highly adsorptive biochar was manufactured via sequential disperse impregnation of iron by refluxing and pyrolysis at low temperature for eliminating tetracycline (TC) from aqueous solution. Iron oxides and hydroxides were impregnated and stably dispersed on the carbon matrix as pyrolyzed at 200 °C, meanwhile abundant oxygen and nitrogen functional groups were generated on surface. The iron-doped biochar exhibited up to 891.37 mg/g adsorption capacity at pH 5, and could be recycled with high adsorption capability. The adsorption of TC should be mostly contributed to the hydrogen bonding of N/O functional groups and the hydrogen bonding/coordination of iron oxides/hydroxides. This would provide a valuable guide for dispersedly doping iron and conserving functional groups on biochar, and a super iron-doped biochar was prepared with superior recyclability.
Asunto(s)
Hierro , Contaminantes Químicos del Agua , Temperatura , Adsorción , Pirólisis , Carbón Orgánico , Tetraciclina , Antibacterianos , Agua , Hidróxidos , Contaminantes Químicos del Agua/análisis , CinéticaRESUMEN
Fenton modification, involving iron-promoted pyrolysis followed by H2O2 oxidation, was first employed to improve the adsorptive and magnetic capabilities of biochar. Modified biochars were prepared from rubber tree bark and coconut shell through iron-promoted pyrolysis and subsequent H2O2 oxidation, and their adsorption behaviors toward Cr (VI) and MB were evaluated in aqueous solution. The modified biochars pyrolyzed at 300 and 400 ËC displayed much higher adsorption capabilities than corresponding pristine biochars for Cr (VI) and MB, respectively, ascribing to introduction of COOH, CO and C-O groups by Fenton oxidation. More importantly, saturation magnetization could be enhanced by transforming nonmagnetic iron oxides into γ-Fe2O3 through H2O2 oxidation. The removal of Cr (VI) and MB could be primarily contributed to the adsorption of biochar matrix by reduction/hydrogen bonding/cation exchange/electrostatic interaction and hydrogen bonding/cation exchange/electrostatic interaction, respectively. This would provide a novel and efficient strategy for making highly adsorptive magnetic biochar.
Asunto(s)
Peróxido de Hidrógeno , Contaminantes Químicos del Agua/análisis , Adsorción , Carbón Orgánico , Cromo , Fenómenos MagnéticosRESUMEN
Catalytic oxidative pyrolysis is a promising method for the preparation of highly adsorptive biochar by introducing oxygen-containing groups. Here, a K2FeO4-catalyzed oxidative pyrolysis was described for enhancing the adsorption capability of areca leaf biochar toward methylene blue at low temperature. It was shown that the maximum adsorption capacity of the biochar pyrolyzed at 200 °C was greatly improved from 122.67 to 251.95 mg g-1 with the catalysis of K2FeO4 due to the introduction of surface oxygen-containing groups. In addition, a high adsorption capability was observed over a wide pH range for the K2FeO4-modified biochar and nearly neutral pH was obtained after adsorption, further demonstrating the great advantages of K2FeO4-catalyzed oxidative pyrolysis. Mechanistic studies revealed that the adsorption of the pristine biochar was mainly determined by hydrogen bonding and electrostatic interaction. Whereas, the adsorption of the K2FeO4-modified biochar was attributed to cation exchange besides hydrogen bonding and electrostatic interactions.